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Abstract. A learning mechanism based on findings in cognitive science was added to an agent-based 

computational design system to determine if this mechanism would enable the system to learn from its 

experiences and transfer useful design knowledge to new problems. Learning and transfer were evaluated 

by examining how well knowledge learned while solving one problem could be applied to solve the same 

problem more effectively as well as how well this knowledge could be transferred to new design problems. 

An existing system, A-Design, was enhanced by giving it the ability to learn and store useful design 

knowledge so that this knowledge can be used in new design problems. Three electromechanical design 

problems were used to evaluate this new learning mechanism, and results indicate that this basic 

cognitively-based learning mechanism is successful at transferring design knowledge to new problems with 

a few limitations. This knowledge transfer leads to a more effective design process.
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1. Introduction

Human designers typically become better at designing devices in a domain as 

their experience in that domain increases. Computational design systems should also be 

able to learn from their design experiences so that they can learn to produce higher 

quality designs in a shorter amount of time. The work presented here is an attempt to 

enhance an existing design system, A-Design, to give it the ability to learn from its 

experiences. In particular, the learning mechanisms that were added to the system are 

based on ideas about learning derived from the cognitive science literature.

The process of acquiring expertise is gradual and has been documented in a 

number of other domains (Chase & Simon 1973; Larkin, McDermott, Simon, & Simon 

1980; Reitman 1976; Richman, Staszewski, & Simon 1995). The reason for this 

improvement in performance with experience is due in part to the expert’s ability to 

utilize previous experiences. One aspect of using previous design experiences is the 

ability of the designer to transfer knowledge learned in a past design problem to the 

problem that is currently being pursued. Incorporating previous knowledge into a new 

problem allows designers to explore different design possibilities and prevents them from 

having to solve the same subproblems multiple times. If a designer encounters a part of 

the current design problem that resembles a previously encountered design or part of such 

a design, the designer has the option to incorporate parts of that previous design into the 

current design. This process allows designers to reuse other designs and so prevents them 

from going through the effort of solving the same problem twice. Alternatively, if part of 

a design is performing poorly or is too costly, a designer may be able to substitute other 

parts which perform better through an analogy process based on other designs in 

memory. These are only a few of the ways in which the ability to transfer knowledge 

between problems is potentially useful in engineering design. However, transfer 

processes have only been implemented in a few computational design systems.

Case-based design systems such as CADET (Sycara, Chandra, Guttal, Koning, & 

Narasimhan  1991),  ARCHIE-II  (Domeshek  &  Kolodner  1991)  ,  and  Kritik2  (Goel, 

Bhatta, & Stroulia 1997) all have the capability of transferring the knowledge they have 

stored as cases to new problems. However, only some of the systems have the capability 
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of indexing new cases into memory so that design experience can accumulate over time 

(Goel  et  al.  1997).  While  these systems are able  to implement  a  form of knowledge 

transfer, there are other forms of transfer in which the knowledge being transferred does 

not  consist  of  an  entire  previously  encountered  design.  There  are  some  cases  where 

transfer of more abstract knowledge may be beneficial. In these cases, another transfer 

process may be required such as the chunking process added to A-Design in this study. 

The chunks in A-Design are more abstract in the sense that they consist of embodiments 

and not actual instantiated components as described below. One type of abstract process 

that has received some attention in previous work is analogy.

Analogy  is  a  powerful  method  that  may be  used  to  transfer  knowledge from 

previous designs as well as from other knowledge and experiences from the designer’s 

memory.  Analogies  could  be  used  to  increase  understanding  of  a  novel  design  by 

allowing the designer to map previous experience onto the new device. There are many 

other uses for analogy in design, and there has been some work on models of design by 

analogy (Bhatta & Goel 1996; Howe, Cohen, Dixon, & Simmons 1986; Huhns & Acosta 

1988).

However, there have been fewer attempts to incorporate knowledge transfer into 

more search oriented design systems. These systems usually employ a form of search that 

takes advantage of computational power to search a large number of possible designs, 

and they have been based on traditional AI search techniques (Ulrich 1989; Welch & 

Dixon  1994),  genetic  algorithms  (Brown  &  Hwang  1993),  and  simulated  annealing 

(Szykman & Cagan 1995).  This  paper  describes  an attempt  to modify  such a  design 

system in order  to incorporate  some knowledge transfer  processes.  This  modification 

allows a powerful search based system to take advantage of learned design knowledge.

A-Design  is  a  multi-agent  design  system  based  on  an  iterative  stochastic 

algorithm  which  in  many  ways  resembles  a  genetic  algorithm  (Campbell,  Cagan,  & 

Kotovsky 1999,  2000,  2003).  The work  presented  here  is  an  attempt  to  augment  A-

Design with a basic  learning mechanism based on human cognition  that  allows it  to 

transfer knowledge across design problems. The idea is to give the system the capability 

to extract knowledge as it solves design problems which can then be used to improve 

performance when solving novel problems. This process allows A-Design to work with 
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design knowledge at an abstract level so that the design knowledge is not necessarily tied 

to  a  specific  design.  In  addition,  using  this  knowledge  does  not  require  a  complex 

analogical process. This work is motivated by findings from cognitive psychology which 

are described next. Following this description, an introduction to A-Design is presented 

followed by a description of the changes to the system that allow it to learn from its 

design experience. The results demonstrate that A-Design was able to transfer knowledge 

from one design problem to another, but there are some limitations to this process as it is 

currently  implemented.  These  limitations  and  possibilities  for  overcoming  them  are 

discussed along with some of the reasons for studying the cognitive basis of engineering 

design.

2. Cognitive Basis

Experienced designers approach a design problem with a large body of potentially 

relevant  experience  and  background  knowledge,  and  this  knowledge  helps  these 

designers  to  produce  better  designs  than  designers  who  have  little  or  no  design 

experience. However, the presence and amount of this experience is likely to be only one 

of many differences  between expert  and novice designers.  In general,  the differences 

between experts and novices in a domain are characterized by the amount of relevant 

knowledge in memory, the representation of this knowledge, and the organization of this 

knowledge.  These are  the types  of expert/novice  differences  that  have been found in 

domains such as chess, physics, electronics, Go, and medicine (Chase & Simon 1973; 

Egan & Schwartz 1979; Larkin et al. 1980; Patel & Groen 1991; Reitman 1976; van de 

Wiel, Boshuizen, & Schmidt 2000). Results of these studies indicate that the organization 

of knowledge in memory differs between experts and novices in a domain just as much as 

the  amount  of  knowledge  does.  These  findings  can  be  used  as  initial  guides  when 

conducting  psychological  studies  of  expert/novice  differences  in  the  domain  of 

engineering design, but they can also contribute ideas on how to incorporate cognitive 

principles into computational design systems.

One of the most common findings in the study of expertise is that experts have the 

ability to group large amounts of information into a single memory unit or chunk. This 
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chunking process has been a finding in a number of the domains mentioned above (Chase 

& Simon 1973; Egan & Schwartz 1979; Reitman 1976). For example, chess masters are 

able  to recall  the pieces  on a  mid-game chess board almost  perfectly  after  only five 

seconds of exposure, but novice chess players can only recall five to seven pieces (Chase 

& Simon 1973). However, this finding is not due to extraordinary memory abilities, since 

both  types  of  players  recall  only  about  seven pieces  from randomly generated  board 

positions. An analysis of the extraordinary recall ability of the chess master indicates that 

this recall is supported by the ability to group four to six memory pieces into a single unit  

of memory storage called a chunk. Novices appear to be unable to construct such chunks. 

This  chunking ability  is  supported by a large knowledge base of common perceptual 

patterns of chess positions. Experts appear to be able to recognize such common patterns 

from past experience, and then the location of the pattern only has to be referred to in 

long-term memory when recalling the pieces. This chunking ability in a domain has been 

used to explain how experts are better able to perceive, analyze, and act on situations in 

their domain (Chase & Simon 1973).

In the study presented here, the main issue is the kinds of mechanisms that must 

be employed in order to allow a computational design system to demonstrate the ability 

to learn and utilize familiar design patterns. There is no attempt to actually model the 

particular  cognitive  processes  that  human  designers  employ  in  order  to  learn  such 

information; the idea is rather to supply a design system with a simple chunking ability 

modeled  on  finings  from  studies  of  cognitive  processes  used  in  other  domains  of 

expertise. An agent-based design system called A-Design was modified to include new 

processes and agents that allow it to store chunks from past design experiences and utilize 

these chunks when solving new design problems. This new learning mechanism is simple 

in  comparison  to  the  cognitive  processes  utilized  by  humans  in  order  to  transfer 

knowledge to new problems, but its successes and limitations provide insight that should 

aid  in  future  attempts  to  incorporate  learning  processes  into  computational  design 

systems.
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3. Background: A-Design

An introduction to A-Design is required in order to explain how the agents in the 

system produce designs, and how the system was modified in order to include the new 

learning processes. A detailed description of A-Design can be found in Campbell (2000) 

and Campbell et al. (1999, 2000).

A-Design is an agent-based design system that produces an array of conceptual 

design solutions in response to a set of input and output constraints for a design problem. 

A design problem is specified to A-Design by specifying the input and output constraints 

of the desired device in A-Design’s representation. For example, a punch press could be 

specified to the system by indicating that the input is a downward force on a handle, and 

the output of the device is a much larger downward force that drives a punch into some 

material (Figure 1). Along with these general input and output specifications, a number of 

other  input/output  constraints  are  specified  such  as  the  desire  to  minimize  handle 

displacement  in  the punch press  (shown as  a  goal  of  zero meters  of  displacement  in 

Figure 1). This problem also specifies that the punch should only be displaced by .25m. 

In addition to these constraints a number of other objectives can be specified such as 

minimizing the cost and weight of the device. Once a problem and all of the associated 

objectives have been specified, A-Design’s iterative design process attempts to produce a 

design  that  optimizes  these  design  goals  by  working  at  both  the  configuration  and 

component  levels.  Components  are  taken  from  a  user-defined  catalog  that  contains 

information about actual parts.

Figure 1

3.1. Iterative Design Process

A-Design’s iterative design process is similar to a genetic algorithm because in 

each iteration a number of new design candidates are produced by the system, and then 

the best of these designs are chosen to be the basis for the production of new designs in 

the next iteration. The basic structure of A-Design’s iterative design process is shown in 

Figure 2 along with the set of agents associated with each part of the process.
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The  design  process  begins  with  a  set  of  configuration  agents  (C-agents)  who 

construct  candidate  designs  using  a  library  of  embodiments.  Each  C-agent  adds  one 

embodiment to an incomplete design until either the design is complete or a maximum 

number of embodiments have been added to the design. A candidate design starts off as 

just a set of input and output constraints to which components can be added. These input 

and output constraints are represented in structures called functional parameters (FPs). 

An FP represents the characteristics of an interface between components, and a C-agent 

utilizes  the  qualitative  information  in  an FP to  determine  which  embodiments  in  the 

embodiment catalog can be connected to the incomplete design. The embodiment catalog 

contains  information  about  types  of  components,  but  these  components  are  not 

instantiated  with  actual  parameter  values  such  as  length,  resistance,  etc.  While  this 

embodiment catalog is user defined, Chen and Brown (2002) have shown that it may be 

possible for A-Design to modify this catalog itself. There is also a second catalog, the 

component  catalog,  which  contains  a  number  of  instantiated  versions  of  each 

embodiment. This component catalog is used by the I-agents as described below. Once an 

embodiment is added to one of the FPs, the free ports of the embodiment are included as 

new FPs where future embodiments can be attached. A form of qualitative reasoning is 

used to update the constraints in the incomplete design as each embodiment is added. A 

candidate  is  complete  once  it  has  connected  the  input  and  output  FPs  and  has 

qualitatively  satisfied  the  input  and  output  constraints.  A  C-agent  chooses  which 

embodiment to add to an incomplete design based on a set of preferences built into the 

agent, the current state of the incomplete design, and other influences originating from 

the manager  agents in the system. For example,  some C-agents may prefer hydraulic 

components while others prefer electrical ones or components connected in series over 

ones  connected  in  parallel.  The  current  state  of  the  design  can  also influence  which 

embodiment a C-agent selects. If a device should have a bounded displacement at the 

output  such as  in  the  punch press  example  in  Figure  1,  then  an  agent  would  prefer 

components  which  accomplished  this  goal  when added to  the  system.  The C-agents’ 

choices are also influenced by feedback they receive from manager agents in the system 

as discussed below. Once the set of C-agents have constructed a set number of designs 

these designs are passed to a group of instantiation agents (I-agents).
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Figure 2

I-agents  take  the  configuration  designs  from  C-agents  and  instantiate  the 

parameters  in  the  system with  values  obtained  from a  catalog  of  components.  Each 

embodiment  in  the  configuration  has  a  set  of  parameters  such  as  length,  weight,  or 

resistance. These agents also have a set of built in preferences. For example, some I-

agents may prefer using components that are low cost while others prefer those that are 

low weight. Once all of the components in a design have been instantiated, equations that 

describe the behavior of the design can be extracted. These equations allow the design to 

be evaluated on how well it satisfies the constraints of the given problem. For example, 

the equations extracted from a punch press design are then used to evaluate how much 

the  handle  is  displaced  since  that  is  one  of  the  specified  constraints.  In  this 

implementation, each device is evaluated along the dimensions specified in the problem, 

and these evaluations are combined into a linearly weighted sum. All of the devices are 

then sorted by this sum and Pareto optimal, good (based on weighting), and poor devices 

are separated based on this ordering. These design partitions are then passed to a set of 

manager agents (M-agents). For the purposes of the work in this paper Pareto and good 

designs are both lumped into one category of good designs. The A-Design system still  

distinguishes  between  the  two,  but  the  chunking  and memory  mechanisms  described 

below treat good and Pareto designs in the same way.

M-agents take the current design population and produce feedback that controls 

how other agents in the system operate. First, the agents which contribute to good and 

poor  designs  are  examined  and  the  probabilities  controlling  how  often  those  agents 

contribute  to  designs  are  adjusted.  A  C-agent  that  contributed  to  a  number  of  good 

designs will be called more frequently than one who contributed to many poor designs. 

The M-agents keep track of the number of good designs that each C/I-agent contributes 

to,  and the probability that a specific C/I-agent will  be called upon in the future is a 

function of its past success. These statistics are used for all of the agents except for the 

M-agents. Managers also look for trends in the design population. Trends are groups of 

agents  or  connected  embodiments  that  appear  together  in  a  number  of  designs  (see 

example in Figure 3). Good trends are found by examining the best designs, and bad 
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trends are extracted from the worst designs. In this implementation, the six best designs 

and the six worst designs are used to extract trends. Good trends are placed on a “todo” 

list and bad trends on a “taboo” list. These lists work by encouraging agents to reproduce 

combinations of agents or embodiments that are on the todo list and discouraging agents 

from reproducing the groupings on the taboo list.  In this manner,  the todo/taboo lists 

allow the M-agent to influence the designs that are generated in the next iteration of the 

design process, but they exert this influence only within a given run on a single problem.

In addition to passing the good designs from the current iteration into the next 

iteration, all good designs are passed to fragmentation agents (F-agents), who take out 

one or more components of the design. These fragmented designs are then reconstructed 

and become part of the next iteration’s design population.  This fragmentation process 

allows good designs to propagate similar designs to the next iteration with the hope that 

the changes made to each design will improve it. The design population now consists of 

the good designs plus the newly reconstructed designs. In the next iteration the C-agents 

produce the number of new designs necessary to bring the design population back to the 

original number of designs. This design population level is a parameter of the system. 

This iterative process is the basis of the A-Design system.

Figure 3

4. Learning Across Problems in A-Design

In this work, we extended A-Design so that it  could learn knowledge from its 

design experiences for application to future designs. In order to do this A-Design needed 

to be able to extract knowledge from its design problem solving activities, and once it had 

this knowledge there had to be some way of applying it to new design problems. One 

type of information that A-Design already knew how to extract was the good trends in a 

set of designs produced in a single iteration. The sets of interconnected embodiments that 

appear on the todo list are subsystems that appear in a number of good designs, and so it 

is  likely then that these subsystems perform well  in the current  problem and may be 

worth remembering for future use.
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A-Design’s design process is a series of iterations in which the current designs 

perform the same as or better than those in the previous iteration, and so the subsystems 

found on the todo list in the final iteration are the ones from the best designs produced. 

These subsystems were chosen as the ones to be remembered in the memory store. Each 

subsystem appearing  on this  list  is  extracted  and placed into memory as  a  chunk of 

knowledge.  A  subsystem  from  the  todo  list  usually  has  many  open  ports  to  which 

additional embodiments can be attached. It is also desirable to be able to call one of these 

open ports the input to the subsystem and to call  another port the output. In order to 

identify input and output ports, the new system randomly selects one of the designs that 

the subsystem appeared in before it was placed on the todo list. The embodiment closest 

to the input of the original design is labeled as the input to the subsystem, and the same 

process is done to label one port the output. Each chunk is then placed in memory and 

indexed  by its  input  and output  constraints  since  this  is  the  only  information  that  is 

needed to determine if a component can be added to an incomplete design by the C-

agents in the system.

An example chunk consisting of a belt and pulley connected together is shown in 

Figure 4. This chunk extraction process is only half of the knowledge transfer process. 

After a knowledge base of chunks has been constructed, a new set of C-agents is needed 

that have the ability to add chunks from memory to designs during the configuration part 

of  the  design  process.  These  memory  agents  (Mem-agents)  add  components  to 

incomplete  designs  just  as  the  C-agents  do except  that  they  are  adding chunks  from 

memory instead of embodiments  from the embodiment  catalog.  There is  a three step 

process by which a chunk is added to a design (Figure 5). First, a memory agent is called 

to work on an incomplete design. The memory agent then examines the open FPs in the 

system to determine where chunks may be added. The agent then looks in memory for a 

chunk that is compatible with one or more of the FPs in the design and adds this chunk. 

As  mentioned  before,  all  chunks  are  indexed  in  memory  by  their  input  and  output 

constraints which are essentially the input and output FPs for the chunk. Chunks can then 

be retrieved from memory either based on their input, their output, or both. Each of these 

retrieval  methods  is  embodied  in  one  Mem-agent.  For  example,  the  Mem-agent 

implementing the input retrieval strategy will search for chunks in memory whose input 
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constraints  match one of the open FPs in the design, but the input-output Mem-agent 

would search for chunks in memory whose input/output constraints match two open FPs, 

one for input and one for output.

Figure 4

Figure 5

There  are  some  cases  in  which  multiple  chunks  in  memory  are  retrieved  as 

potential  chunks to be added to a  design.  In this  case,  a Mem-agent  needs a way of 

determining which chunk to add. The chunk could just be randomly selected from all 

possible chunks, or there could be some form of learning that takes place within the 

memory agent that allows it to pick the chunk most likely to produce a good design. The 

second option was implemented and is based on learning mechanisms found in the ACT-

R model of human memory (Anderson & Lebiere 1998). Each memory agent is informed 

about the consequences of its actions by the manager agent, and the memory agent can 

then use this feedback to choose among multiple chunks when it has to. When a Mem-

agent adds a chunk to a design, the design can either end up being evaluated as a good 

design or a poor design as discussed above. The proportion of good designs that result 

from using a particular chunk is calculated by dividing the number of good designs the 

chunk  was  used  in  by  the  number  of  times  the  chunk  was  used.  This  proportion  is 

calculated  based  on  design  evaluation  data  from  the  previous  five  iterations.  When 

multiple chunks are retrieved, the probability that any particular one is chosen is just the 

proportion of good designs for that chunk divided by the sum of the proportions for all of 

the chunks retrieved from memory. If the proportion of good designs for a particular 

chunk is below some minimum level then this minimum proportion is used instead of the 

actual  value  so  that  every  chunk  has  at  least  a  small  probability  of  being  chosen 

regardless  of  its  past  performance.  These  proportions  are  updated  dynamically  each 

iteration  to  include  information  about  good and  poor  chunks  from the  previous  five 

iterations.  This  mechanism  is  also  similar  to  the  strategy  for  move  selection  in  the 

simulated annealing algorithm found in (Hustin & Sangiovanni-Vincentelli 1987). Each 

of  the three Mem-agents  maintains  a  separate  set  of  these statistics  because different 
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chunks in memory may be more suited to one of the three memory retrieval strategies 

outlined above.

These additions to A-Design give it the basic capabilities of noticing and storing 

common  co-occurring  elements  in  chunks,  noticing  when  a  current  design  can  be 

augmented  with  information  from memory,  and the  ability  to  learn  which  chunks in 

memory perform the best in a given design problem. In general,  one of these chunks 

serves as a way from getting from a certain type of interface and energy to another type 

of  interface  and  energy.  This  allows  for  a  type  of  abstract  knowledge  to  be  gained 

through the chunking of patterns of components. These basic mechanisms should allow 

the system to accumulate some amount of expertise in design problem solving. Similar 

chunking mechanisms are well documented learning processes in human cognition, and 

the chunking described above is similar to the way in which certain types of knowledge 

are acquired in the process of becoming an expert in some domains such as chess and Go 

(Chase & Simon 1973;  Reitman 1976).  There  are  also  some similarities  between A-

Design’s chunking of common design elements and the way in which certain types of 

cognitive architectures chunk together problem solving steps (i.e. SOAR, Newell 1990).

5. Testing Learning

The chunk learning mechanism of A-Design was tested to see if it allowed the 

system to learn both within and between problems. Learning within the same problem is 

simply the case where A-Design works on a design problem, learns chunks, and then 

works on the same design problem again with the new chunks. Within problem learning 

should indicate  whether the chunking mechanism is allowing the system to learn and 

apply  useful  knowledge about  the  design  problem.  Between problem learning occurs 

when A-Design applies chunks learned in one problem to a new design problem, and it is 

this  type  of  knowledge  transfer  that  the  chunking  mechanism  was  designed  to 

accomplish.

Within problem learning was evaluated by running A-Design 20 times on one 

problem, and in each of these runs, a set of chunks was generated from the final design 

population. A-Design was then run again on the same problem 20 times, once with each 
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of the 20 sets of learned chunks. The number of iterations in each run was 60, and the 

design  population  was  set  to  120 designs.  A graph of  A-Design’s  performance  on a 

design problem can be constructed by taking the evaluation score for the best design at 

each iteration and averaging this evaluation across all twenty runs of the problem. This 

leads to a graph similar to Figure 6 in which each line in the figure shows A-Design’s 

average performance on one design problem. The performance difference between the 

initial problem and the second attempt at the problem was measured in three ways (see 

Figure 6). The evaluations of the initial designs, the evaluations of the final designs, and 

the number of iterations until a specified evaluation level is reached can be compared. 

The comparison of the number of iterations can be looked at as the number of iterations 

that were saved by the presence of chunks and it  will be referred to as a measure of 

savings. The criterion evaluation level for each problem presented here is just the average 

evaluation score obtained in the final best design without using a set of stored chunks, i.e. 

just the performance of the A-Design system without the new learning mechanism. Any 

statistically significant differences in performance from the first attempt to the second can 

then be attributed to the chunks that were used in the second attempt.

This measure of savings was calculated by recording the iteration at which each 

run  of  A-Design  reached  the  criterion  level.  If  an  individual  run  did  not  reach  the 

criterion level by the end of 60 iterations, then the number of iterations to criterion was 

just taken to be 60 for that run. The average number of iterations for a given condition 

can then be calculated by averaging the number of iterations to criterion for each of the 

20  runs  in  a  condition.  The  average  number  of  iterations  to  criterion  can  then  be 

compared for any two conditions (i.e. for chunk and no chunk conditions). This yields a 

conservative estimate of the amount of savings since each run is capped at 60 iterations 

even if it would have taken longer to reach criterion.

Figure 6

Another potential metric that should be kept in mind is the actual running time for 

A-Design to finish a set of 60 iterations as outlined above. In general, the Mem-agents 

are computationally more expensive than normal C-agents. It is useful to determine if 

these extra costs significantly impact the running time. Run time results were examined 
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for all three problems, and it was found that the average time for the completion of one 

iteration did not differ significantly when Mem-agents were used. Therefore any benefits 

of the chunking processes do not come at the expense of significantly increased run time.

5.1. Design Problems

Three electromechanical design problems were used to assess the benefits of the 

chunking mechanism: a punch press, a pressure gauge, and a weighing machine.  The 

punch press problem is the same as described above, a handle is pulled which forces a 

punch through some material at the output.  Punch presses are evaluated based on their 

cost,  the amount  of input  handle displacement,  and how closely they conform to the 

specified  output  displacement  and  force.  The  pressure  gauge  problem  has  an  input 

pressure  source  and the  output  is  a  dial  display  that  reflects  the  amount  of  pressure 

coming  from the  pressure  source,  and  this  problem  is  evaluated  on  the  cost,  mass, 

efficiency,  and  dial  accuracy  of  the  gauge.  The  weighing  machine  as  defined  by 

(Campbell et al. 1999) takes a force input on a footpad and has a dial output, and it is 

evaluated on the cost,  mass, dial  accuracy, and input displacement  of the device.  An 

example  of  the  linearly  weighted  evaluation  function  is  presented  in  Figure  7.  The 

evaluation function deals with real quantities like dollars, radians, and grams so the scales 

are difficult to interpret when combined with the weights. The relative weighting is the 

most  important  aspect  of  the  evaluation  function  for  our  purposes.  For  example,  the 

weights presented in Figure 7 emphasize dial accuracy while placing little emphasis on 

cost.  In  this  equation,  characteristics  like  cost  can  be  read  from  the  cost  of  the 

components, but to evaluate accuracy a behavioral equation must be extracted from the 

design so that accuracy can be calculated. Some example designs produced by A-Design 

for these problems are presented in Figure 8. These example designs are typical of the 

kinds of solutions A-Design produces for each problem. The component catalog used in 

this research is the same as the one that has been presented in previous A-Design work 

(Campbell 2000; Campbell et al. 1999, 2000). The only additions to the catalog were the 

input and output components for the new problems, such as the handle and punch for the 

punch press problem.
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Figure 7

Figure 8

These specific problems were utilized to provide both a problem that was similar 

to the weighing machine as well as a problem that was significantly different from the 

weighing machine. The pressure gauge is a measurement device with a dial output just 

like the weighing machine. However, the goal of the punch press is to amplify the small 

input force so that it is sufficient to drive a punch through some material. It was thought 

that this problem shares little with the weighing machine so it was used to evaluate how 

context dependent A-Design’s new knowledge capabilities would be.  For example, if A-

Design learned design chunks from the weighing machine problem, then these chunks 

might be easier to apply in the pressure gauge problem since this problem is similar to the 

weighing machine.  On the other hand, applying these same design chunks to the punch 

press might be more difficult and potentially less useful because the punch press does not 

have as much in common with the weighing machine.  This means that  the similarity 

between the devices probably has an impact  on which learned chunks are transferred 

successfully.

The specific evaluation function used to evaluate a device does have an impact on 

the chunks learned from that design experience. For example, a pressure gauge design 

that  minimizes  cost above all  else  would be different  from a design which primarily 

emphasizes the accuracy of the gauge. These different designs would lead to different 

chunks, and it may be that these chunks will transfer best to designs that have a similar 

emphasis in their evaluation functions. This aspect of chunking is not explored in the 

current  work.  Our primary  goal  was to evaluate  the viability  of  the simple chunking 

mechanism described above. We tried to keep the emphasis in the evaluation functions as 

constant as possible. For example, both the weighing machine and the pressure gauge 

evaluations emphasize accuracy more than any other criteria.

Two sample chunks are shown in Figure 9. Figure 9a shows a chunk learned by 

A-Design while solving the weighing machine problem. This chunk was then used in the 

production of pressure gauge designs, and in particular, this chunk was used in the design 
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of the pressure gauge shown in Figure 8. Figure 9b is another example of a chunk learned 

in the weighing machine problem, and it was used in the production of the punch press 

design seen in Figure 8. The first chunk is larger as it contains 7 components as opposed 

to the smaller chunk composed of two components. Larger chunks were more frequently 

transferred between the weighing machine and pressure gauge problems than between the 

punch press and other problems. This finding was not unexpected and is due to the degree 

of similarity among the problems as noted above.

Figure 9

6. Results

6.1. Within problem results

Within problem results for the three design problems can be seen in Figures 10-12 

and  Tables  1-3.  There  appears  to  be  within  problem  learning  in  each  of  the  three 

problems (lower evaluation scores are better). A series of paired t-tests was run to assess 

the statistical significance of any differences in the three performance measures discussed 

above. In some cases the assumptions of the t-test did not hold (such as equal variances). 

In these cases nonparametric statistical tests were also run, but the results from these tests 

did not differ from those of the t-tests.

6.1.1. Weighing Machine

In the weighing machine problem only the comparison of the initial designs was 

not  significantly  different,  t(19) = 1.19,  p = .12,  but both the comparison of the last 

designs, t(19) = 2.47, p = .01, and the amount of savings, t(19) = 3.73, p < .001, were 

significant. On average, the final design produced without chunks had an evaluation of 

21.7 as compared to 19.3 with chunks, and the number of iterations required to reach an 

evaluation of 21.7 was 45.6 without chunks and 30.7 with chunks, 33% fewer iterations.

Figure 10
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6.1.2. Pressure Gauge

In the pressure gauge problem the comparison of initial designs, t(19) = 2.14, p = .

02, and savings, t(19) = 1.82, p = .04, were significant, but the comparison of final design 

evaluations was not, t(19) = 1.19, p = .12. On average, the initial design produced without 

any chunks was 50,302 as compared to 35,358 with chunks, and the number of iterations 

required to reach an evaluation of 3,258 was 44 without chunks and 32.7 with chunks, 

26% fewer iterations.

Figure 11

6.1.3. Punch Press

In the punch press problem the comparison of initial designs, t(19) = 3.32, p = .

002,  final  designs  t(19) = 3.34,  p  = .002, and savings,  t(19)  = 2.73,  p = .007, were 

significant. On average, the initial design evaluation produced without any chunks was 

9,046 as compared to 6,675 with chunks, the final design produced without any chunks 

was 1,658 compared to 1,016 with chunks, and the number of iterations required to reach 

an  evaluation  of  1,658  was  38.9  without  chunks  and  23  with  chunks,  41%  fewer 

iterations.

Figure 12

6.2. Between problem results

The results for between problem transfer can be seen in Figures 13-15 and Tables 

4-6. For each problem, a one way ANOVA was run for each comparison followed by a 

series of planned contrasts if the ANOVA indicated any significant differences. In some 

cases the assumptions of the ANOVA did not hold (such as equal variances). In these 

cases nonparametric statistical tests were also run, but the results from these tests did not 

differ from those of the ANOVAs.
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6.2.1. Weighing Machine

Figure 13 indicates that the three conditions perform about the same, and there 

were  no  significant  differences  in  initial  evaluations,  F(2,57)  =  .74,  p  =  .24,  final 

evaluations, F(2,57) = .06, p = .47, or savings, F(2,57) = .804, p = .23, for the weighing  

machine problem. Thus neither the pressure gauge nor the punch press chunks produced 

significant  improvements  in  the  weighing  machine  problem.  In  this  case,  the  within 

problem transfer results outperformed all cases of between problem transfer.

Figure 13

6.2.2. Pressure Gauge

Figure  14  indicates  that  the  two  conditions  with  chunks  perform  better  than 

solving the problem with no previous knowledge. There were significant differences in 

final evaluations, F(2,57) = 2.94, p = .03, and savings, F(2,57) = 4.53, p = .008, but not 

for the initial evaluations, F(2,57) = .9, p = .21. A series of contrasts reveal that chunks 

from the weighing machine problem allow the system to produce better designs than the 

no chunk condition, and both the weighing machine and punch press chunk conditions 

produce  significant  savings  when  compared  to  the  no  chunk  condition.  Final  design 

evaluations in the weighing machine chunk condition had an average of 2,766 while the 

average  in  the  no  chunk  condition  was  3,258.  Chunks  from  the  weighing  machine 

problem help the system to reach an evaluation of 3,258 in 28.8 iterations as compared to 

44 iterations for the no chunk condition, and chunks from the punch press problem also 

allow  the  system  to  reach  the  criterion  evaluation  in  29  iterations,  34-35%  fewer 

iterations  in both cases.  It  can also be seen (Figures 14 and 11) that  within problem 

transfer produced similar quality final designs and reached criterion in a similar number 

of iterations as did the two between problem transfer conditions. In fact, the two between 

problem  transfer  cases  appear  to  outperform  the  within  problem  transfer,  but  these 

differences were not statistically significant.

Figure 14
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6.2.3 Punch Press

Figure  15  indicates  that  the  two  conditions  with  chunks  perform  better  than 

solving the problem with no previous knowledge. There were significant differences in 

final evaluations, F(2,57) = 4.09, p = .01, but not for the initial evaluations, F(2,57) = .65, 

p = .26, or savings, F(2,57) = 1.37, p = .13. A series of contrasts reveal that both of the 

chunk conditions  produce  significantly  better  final  designs  when compared to  the  no 

chunk condition. Final design evaluations in the weighing machine chunk condition had 

an average of 1,298 and in the pressure gauge chunk condition the average was 1,271, 

while the average in the no chunk condition was 1,658. The within problem transfer case 

(Figure 12) outperformed between problem transfer in this problem.

Figure 15

7. Discussion

The  chunking  mechanism  did  produce  successful  knowledge  transfer  in  most 

cases. Transfer was found in most cases where it was expected, but interestingly there 

was no significant  between problem transfer when working on the weighing machine 

problem. This was unexpected because of the similarity of the weighing machine and 

pressure gauge problems, and because there was transfer  from the weighing machine 

problem  to  the  pressure  gauge  problem.  Performance  on  the  punch  press  problem 

improved regardless of the types of chunks used which may indicate some unexpected 

similarities between the punch press and the other problems or the existence of some 

chunks  that  work  regardless  of  the  problem context  in  which  they  were  learned.  In 

general, within problem transfer was the most effective type of transfer as none of the 

between problem cases significantly outperformed the within problem case in any of the 

problems. Knowledge transfer within the same problem produced improvements in two 

to three of the performance measures in each problem. In the cases where significant 

between problem transfer did occur, the performance measures that improved were the 

final design evaluations and the savings measure. So while the knowledge from another 
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problem did not produce better initial designs in any of the three problems, it was able to 

improve performance throughout the iterative design process. 

This eventual but not immediate improvement due to transfer could indicate that 

the chunks learned by the system could only be applied to a new problem at some late or 

intermediate stage of the design process. Another explanation is that only some of the 

chunks learned in another problem are beneficial  to the current problem, and it takes 

many attempts to find which of the chunks are beneficial when applied to the current 

design problem. An analysis of the data produced by the system indicates that certain 

chunks did come to be preferred by the system in a certain problem, and this was mostly 

due to the success statistics that are accumulated by Mem-agents as discussed previously. 

It is also possible that some of the chunks had to be slightly modified in order to produce 

improvements  in  a  particular  problem,  and  this  modification  process  did  appear  to 

operate as discussed below.

It  was  hypothesized  that  most  of  the  between  problem  transfer  would  occur 

between the weighing machine and pressure gauge problems due to their similarity. In the 

pressure  gauge  problem,  the  within  problem  chunks  lead  to  the  most  improvement 

followed by the chunks from the weighing machine problem and finally the punch press 

chunks.  This  graded  transfer  makes  sense  as  it  is  easiest  for  the  system  to  apply 

knowledge from the same problem and somewhat  more difficult  to apply knowledge 

from  a  similar  problem.  However,  in  the  weighing  machine  problem  there  was  no 

significant between problem transfer at all. This behavior appears to be caused by the 

embodiments that occur in the chunks learned from the pressure gauge problem. Every 

pressure gauge takes some pressure source as its input, and, given the catalog that was 

supplied,  the  only  way  A-Design  has  of  transforming  this  pressure  source  into  a 

translational  motion  is  by  using  a  hydraulic  cylinder.  So  all  pressure  gauges  have 

cylinders  in  them,  and  since  chunks  are  found  by  extracting  commonalities,  a  large 

portion of the chunks learned by A-Design in this problem have the cylinder embodiment 

in them. None of the best weighing machine designs produced had cylinders in them 

because of the high cost of this embodiment, and so these pressure gauge chunks do not 

appear to be very useful in the weighing machine problem. This seems like the most 

likely cause of the asymmetric transfer.



21
The results  from the punch press problem were also a little  surprising. It  was 

originally thought that this problem had few similarities to either the weighing machine 

or  pressure  gauge  problems,  but  in  both  cases  transfer  to  the  punch press  improved 

results.  One  similarity  that  does  exist  between  the  pressure  gauge  and  punch  press 

problems is that good designs produced for both problems contain hydraulic cylinders, 

and it could be that this similarity made it easier to transfer chunks from one problem to 

the other. There were no such similarities noted for the weighing machine problem and 

the punch press problem though, and so this does indicate that at least some of the chunks 

learned in the weighing machine problem are useful even in dissimilar problems. These 

chunks were mostly small chunks like the one presented in Figure 9b, and these types of 

chunks are applicable in a wide number of designs.

It  was  also  found  that  in  a  few  cases  A-Design’s  preexisting  mechanisms 

interacted with the new Mem-agents to generalize learned chunks to new problems. In 

particular,  if  a  chunk was  useful  enough that  the  design  it  was  incorporated  in  was 

evaluated as a good design, then this design passed through the fragmentation process 

and was reconstructed. In this manner, F-agents were able to contribute to the utility of 

some chunks since parts of the chunk that did not contribute to improving the overall 

design quality had a chance to be removed while other parts of the chunk remained. This 

mechanism was an unexpected interaction between preexisting processes and the new 

chunking mechanisms, and it contributed to the success of the memorized chunks since 

they could be adapted to the new design problem. However, this mechanism was not able 

to overcome the presence of the cylinder in the pressure gauge chunks. One reason for 

this  is  that  the  cylinder  is  an  expensive  component,  and its  inclusion  in  a  weighing 

machine will  cause the design to evaluate  poorly with respect to the many other less 

expensive weighing machine designs. This would mean that this chunk would never be in 

a good design, and so it would never reach the F-agents.

These  results  indicate  that  this  chunk storage  mechanism is  a  useful  learning 

mechanism and has the potential to be an even more useful general learning mechanism 

with  some  further  modifications.  A-Design  could  adapt  the  learned  chunks  to  new 

problems, and this learning mechanism could be combined with a more general analogy 

or reasoning mechanism to make the learned chunks even more beneficial. The necessity 
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for a more general mechanism can be seen by A-Design’s inability to get around the 

predominance of hydraulic cylinders in the chunks learned in the pressure gauge problem 

in order to use them in the weighing machine problem. However, just this basic chunking 

mechanism was enough to enable the system to exhibit significant improvements on most 

problems in the number of iterations needed to produce designs of equal or better quality 

when compared to the system without chunking.

These results can be taken to reflect the widespread utility of chunking as it is 

found in cognitive structures in a variety of domains. As mentioned before, A-Design’s 

chunking process is based on work in cognitive psychology which shows that building up 

an organized structure of domain relevant chunks is one component of the acquisition of 

expertise (Chase & Simon 1973; Egan & Schwartz 1979; Reitman 1976; Richman et al. 

1995). In this manner experts begin to work with larger and more sophisticated units of 

knowledge  as  they  gain  experience.  This  network  of  knowledge  can  make  solving 

common problems more efficient within the area of expertise (Larkin et al. 1980). A-

Design currently has the ability to store chunks of knowledge, but these chunks are not 

highly organized  in  a  hierarchical  structure as they would be in  an expert.  Also,  the 

existence of chunks only makes moderate changes to the way A-Design solves problems. 

While  these  limitations  highlight  A-Design’s  shortcomings  as  a  cognitive  model  of 

engineering  design,  they  also  provide  some indication  of  the  potential  advances  that 

could be made through a better  understanding of the cognitive processes involved in 

engineering design.

8. Conclusions

Overall,  there was some success in producing knowledge transfer with a basic 

chunking mechanism. The mechanism takes advantage of A-Design’s preexisting trend 

finding function to extract chunks, and all that was required to use these chunks was a 

new type of configuration agent that looks in a memory store of chunks instead of the 

embodiment  library.  This  method  of  knowledge  transfer  still  relies  on  the  power  of 

computational search in A-Design’s iterative design process. This mechanism was able to 

produce  impressive  results  when  transferring  chunks  between  problems.  The  system 
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operates  on embodiment  level  similarities  between problems,  and, using only a basic 

approach, lacks a more powerful method of transfer. Such a transfer mechanism would 

probably rely on more knowledge based methods in addition to or instead of brute force 

computational search. For example, processes such as abstraction, qualitative reasoning, 

and  analogy  can  produce  knowledge  transfer  that  operates  across  vastly  different 

problems  and  domains.  Even  with  the  current  limited  processes,  A-Design’s  transfer 

results are reminiscent of transfer results in cognitive psychology.

Research  looking  at  knowledge  transfer  has  shown  that  similarities  between 

problems are one of the most important factors that determine the amount of transfer 

(Holyoak & Koh 1987; Kotovsky & Fallside 1989). Finding similarities between two 

different problems is also a key to using analogy (Falkenhainer, Forbus, & Gentner 1989; 

Holyoak & Thagard 1995). Analogy can be a powerful mechanism by which people can 

apply knowledge from one domain to another, and analogy may help an engineer map 

previous  experiences  onto  novel  design  problems.  However,  all  of  these  transfer 

processes operate on the contents of memory, and therefore a better understanding of the 

structure and content of the memories of expert designers will aid in understanding how 

such transfer processes operate. Cognitive science research has identified a number of 

general  properties  of  expert  memory  in  many  other  domains  such as  its  hierarchical 

organization and chunking properties (Chase & Simon 1973; Egan & Schwartz 1979; 

Ericsson, Chase, & Faloon 1980; Patel & Groen 1991; Reitman 1976; Richman et al. 

1995).  We have also been extended this  type of work to deal  directly  with expertise 

differences in engineering design (Moss, Kotovsky, & Cagan 2003). Our work highlights 

some  of  the  differences  in  device  representation  that  are  associated  with  the  early 

acquisition of expertise in engineering design. These results combined with new work on 

understanding the cognitive processes underlying design will yield a number of benefits 

including  the  construction  of  more  knowledgeable  design  automation  and  assistance 

tools. A-Design has been the basis for our initial exploration into incorporating cognitive 

principles into design systems, and further research in this area should yield benefits for 

computational  design  systems  and,  we  hope,  lead  to  a  better  understanding  of  the 

cognitive processes underlying the design process.
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Figure 1.  The specification for the punch press problem.

Figure 2. A-Design’s iterative design process (adapted from Campbell et al. 1999).

Figure 3. An example trend found by intersecting multiple designs with the overlapping components 

circled.

Figure 4. An example design chunk

Figure 5. Memory agents retrieve chunks from memory

Figure 6.  An illustration of the three measures of performance

Figure 7.  An example evaluation function used for the pressure gauge

Figure 8. Sample solutions produced by A-Design for each of the three design problems.

Figure 9. Sample chunks learned from the weighing machine problem and used in the pressure gauge and 

punch press problems in Figure 7.

Figure 10. Within problem results for the weighing machine problem

Figure 11. Within problem results for the pressure gauge problem.

Figure 12. Within problem results for the punch press problem.

Figure 13. Between problem results for the weighing machine problem

Figure 14. Between problem results for the pressure gauge problem.

Figure 15. Between problem results for the punch press problem.
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TABLE 1. Within problem performance measures for the weighing machine.

Initial evaluations Final evaluations Iterations to criterion

μ σ μ σ μ σ

No chunks 773 1001 21.7 4.90 45.6 16.0

Using within problem chunks 465 632 19.3 3.29 30.7 20.3
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TABLE 2. Within problem performance measures for the pressure gauge.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 50,302 25,775 3,258 807 44.0 18.0
Using within problem chunks 35,358 26,275 3,005 643 32.7 23.5
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TABLE 3. Within problem performance measures for the punch press.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 9,046 1,327 1,658 524 38.9 21.4
Using within problem chunks 6,675 2,762 1,016 517 23.0 18.7
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TABLE 4. Between problem performance measures for the weighing machine.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 773 1001 21.7 4.90 45.6 16.0
Using pressure gauge chunks 700 1397 21.2 4.21 49.5 12.6

Using punch press chunks 405 352 21.4 4.73 43.2 18.4
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TABLE 5. Between problem performance measures for the pressure gauge.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 50,302 25,775 3,258 807 44.0 18.0
Using weigh. machine chunks 42,190 23,483 2,766 441 28.8 18.7

Using punch press chunks 52,670 2,8337 2,889 705 28.9 18.4
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TABLE 6. Between problem performance measures for the punch press.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 9046 1327 1658 524 38.9 21.4
Using weigh. machine chunks 8583 1493 1298 413 28.7 20.0

Using pressure gauge chunks 8472 2139 1271 491 30.7 20.9
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Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight



34

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

Feedback

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

Feedback



35

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

shaft dial

footpad
gear

spring

ground

torsion spring ground

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

shaft dial

footpad
gear

spring

ground

torsion springtorsion spring ground



36
Design Chunk
Belt-pulley-chunk

Isa: design-chunk

Input-domain: translation

Input-interface: bolt

Output-domain: rotation

Output-interface: shaft-hole

Components: (belt pulley)

Connectivity: port-1 of component-1 is connected to port-1 of component-2

Design Chunk
Belt-pulley-chunk

Isa: design-chunk

Input-domain: translation

Input-interface: bolt

Output-domain: rotation

Output-interface: shaft-hole

Components: (belt pulley)

Connectivity: port-1 of component-1 is connected to port-1 of component-2
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Weighing Machine - Within problem
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