
Learning from Design Experience in an Agent-

Based Design System

JARROD MOSS

Department of Psychology

Carnegie Mellon University, Pittsburgh, PA 15213

Corresponding author:

JONATHAN CAGAN

 Department. of Mechanical Engineering

Carnegie Mellon University, Pittsburgh, PA 15213

cagan@cmu.edu
412-268-3713
Fax: 412-268-3348

KENNETH KOTOVSKY

Department of Psychology

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. A learning mechanism based on findings in cognitive science was added to an agent-based

computational design system to determine if this mechanism would enable the system to learn from its

experiences and transfer useful design knowledge to new problems. Learning and transfer were evaluated

by examining how well knowledge learned while solving one problem could be applied to solve the same

problem more effectively as well as how well this knowledge could be transferred to new design problems.

An existing system, A-Design, was enhanced by giving it the ability to learn and store useful design

knowledge so that this knowledge can be used in new design problems. Three electromechanical design

problems were used to evaluate this new learning mechanism, and results indicate that this basic

cognitively-based learning mechanism is successful at transferring design knowledge to new problems with

a few limitations. This knowledge transfer leads to a more effective design process.

Keywords: agents, synthesis, learning, cognitive science

mailto:cagan@cmu.edu

2

1. Introduction

Human designers typically become better at designing devices in a domain as

their experience in that domain increases. Computational design systems should also be

able to learn from their design experiences so that they can learn to produce higher

quality designs in a shorter amount of time. The work presented here is an attempt to

enhance an existing design system, A-Design, to give it the ability to learn from its

experiences. In particular, the learning mechanisms that were added to the system are

based on ideas about learning derived from the cognitive science literature.

The process of acquiring expertise is gradual and has been documented in a

number of other domains (Chase & Simon 1973; Larkin, McDermott, Simon, & Simon

1980; Reitman 1976; Richman, Staszewski, & Simon 1995). The reason for this

improvement in performance with experience is due in part to the expert’s ability to

utilize previous experiences. One aspect of using previous design experiences is the

ability of the designer to transfer knowledge learned in a past design problem to the

problem that is currently being pursued. Incorporating previous knowledge into a new

problem allows designers to explore different design possibilities and prevents them from

having to solve the same subproblems multiple times. If a designer encounters a part of

the current design problem that resembles a previously encountered design or part of such

a design, the designer has the option to incorporate parts of that previous design into the

current design. This process allows designers to reuse other designs and so prevents them

from going through the effort of solving the same problem twice. Alternatively, if part of

a design is performing poorly or is too costly, a designer may be able to substitute other

parts which perform better through an analogy process based on other designs in

memory. These are only a few of the ways in which the ability to transfer knowledge

between problems is potentially useful in engineering design. However, transfer

processes have only been implemented in a few computational design systems.

Case-based design systems such as CADET (Sycara, Chandra, Guttal, Koning, &

Narasimhan 1991), ARCHIE-II (Domeshek & Kolodner 1991) , and Kritik2 (Goel,

Bhatta, & Stroulia 1997) all have the capability of transferring the knowledge they have

stored as cases to new problems. However, only some of the systems have the capability

3
of indexing new cases into memory so that design experience can accumulate over time

(Goel et al. 1997). While these systems are able to implement a form of knowledge

transfer, there are other forms of transfer in which the knowledge being transferred does

not consist of an entire previously encountered design. There are some cases where

transfer of more abstract knowledge may be beneficial. In these cases, another transfer

process may be required such as the chunking process added to A-Design in this study.

The chunks in A-Design are more abstract in the sense that they consist of embodiments

and not actual instantiated components as described below. One type of abstract process

that has received some attention in previous work is analogy.

Analogy is a powerful method that may be used to transfer knowledge from

previous designs as well as from other knowledge and experiences from the designer’s

memory. Analogies could be used to increase understanding of a novel design by

allowing the designer to map previous experience onto the new device. There are many

other uses for analogy in design, and there has been some work on models of design by

analogy (Bhatta & Goel 1996; Howe, Cohen, Dixon, & Simmons 1986; Huhns & Acosta

1988).

However, there have been fewer attempts to incorporate knowledge transfer into

more search oriented design systems. These systems usually employ a form of search that

takes advantage of computational power to search a large number of possible designs,

and they have been based on traditional AI search techniques (Ulrich 1989; Welch &

Dixon 1994), genetic algorithms (Brown & Hwang 1993), and simulated annealing

(Szykman & Cagan 1995). This paper describes an attempt to modify such a design

system in order to incorporate some knowledge transfer processes. This modification

allows a powerful search based system to take advantage of learned design knowledge.

A-Design is a multi-agent design system based on an iterative stochastic

algorithm which in many ways resembles a genetic algorithm (Campbell, Cagan, &

Kotovsky 1999, 2000, 2003). The work presented here is an attempt to augment A-

Design with a basic learning mechanism based on human cognition that allows it to

transfer knowledge across design problems. The idea is to give the system the capability

to extract knowledge as it solves design problems which can then be used to improve

performance when solving novel problems. This process allows A-Design to work with

4
design knowledge at an abstract level so that the design knowledge is not necessarily tied

to a specific design. In addition, using this knowledge does not require a complex

analogical process. This work is motivated by findings from cognitive psychology which

are described next. Following this description, an introduction to A-Design is presented

followed by a description of the changes to the system that allow it to learn from its

design experience. The results demonstrate that A-Design was able to transfer knowledge

from one design problem to another, but there are some limitations to this process as it is

currently implemented. These limitations and possibilities for overcoming them are

discussed along with some of the reasons for studying the cognitive basis of engineering

design.

2. Cognitive Basis

Experienced designers approach a design problem with a large body of potentially

relevant experience and background knowledge, and this knowledge helps these

designers to produce better designs than designers who have little or no design

experience. However, the presence and amount of this experience is likely to be only one

of many differences between expert and novice designers. In general, the differences

between experts and novices in a domain are characterized by the amount of relevant

knowledge in memory, the representation of this knowledge, and the organization of this

knowledge. These are the types of expert/novice differences that have been found in

domains such as chess, physics, electronics, Go, and medicine (Chase & Simon 1973;

Egan & Schwartz 1979; Larkin et al. 1980; Patel & Groen 1991; Reitman 1976; van de

Wiel, Boshuizen, & Schmidt 2000). Results of these studies indicate that the organization

of knowledge in memory differs between experts and novices in a domain just as much as

the amount of knowledge does. These findings can be used as initial guides when

conducting psychological studies of expert/novice differences in the domain of

engineering design, but they can also contribute ideas on how to incorporate cognitive

principles into computational design systems.

One of the most common findings in the study of expertise is that experts have the

ability to group large amounts of information into a single memory unit or chunk. This

5
chunking process has been a finding in a number of the domains mentioned above (Chase

& Simon 1973; Egan & Schwartz 1979; Reitman 1976). For example, chess masters are

able to recall the pieces on a mid-game chess board almost perfectly after only five

seconds of exposure, but novice chess players can only recall five to seven pieces (Chase

& Simon 1973). However, this finding is not due to extraordinary memory abilities, since

both types of players recall only about seven pieces from randomly generated board

positions. An analysis of the extraordinary recall ability of the chess master indicates that

this recall is supported by the ability to group four to six memory pieces into a single unit

of memory storage called a chunk. Novices appear to be unable to construct such chunks.

This chunking ability is supported by a large knowledge base of common perceptual

patterns of chess positions. Experts appear to be able to recognize such common patterns

from past experience, and then the location of the pattern only has to be referred to in

long-term memory when recalling the pieces. This chunking ability in a domain has been

used to explain how experts are better able to perceive, analyze, and act on situations in

their domain (Chase & Simon 1973).

In the study presented here, the main issue is the kinds of mechanisms that must

be employed in order to allow a computational design system to demonstrate the ability

to learn and utilize familiar design patterns. There is no attempt to actually model the

particular cognitive processes that human designers employ in order to learn such

information; the idea is rather to supply a design system with a simple chunking ability

modeled on finings from studies of cognitive processes used in other domains of

expertise. An agent-based design system called A-Design was modified to include new

processes and agents that allow it to store chunks from past design experiences and utilize

these chunks when solving new design problems. This new learning mechanism is simple

in comparison to the cognitive processes utilized by humans in order to transfer

knowledge to new problems, but its successes and limitations provide insight that should

aid in future attempts to incorporate learning processes into computational design

systems.

6

3. Background: A-Design

An introduction to A-Design is required in order to explain how the agents in the

system produce designs, and how the system was modified in order to include the new

learning processes. A detailed description of A-Design can be found in Campbell (2000)

and Campbell et al. (1999, 2000).

A-Design is an agent-based design system that produces an array of conceptual

design solutions in response to a set of input and output constraints for a design problem.

A design problem is specified to A-Design by specifying the input and output constraints

of the desired device in A-Design’s representation. For example, a punch press could be

specified to the system by indicating that the input is a downward force on a handle, and

the output of the device is a much larger downward force that drives a punch into some

material (Figure 1). Along with these general input and output specifications, a number of

other input/output constraints are specified such as the desire to minimize handle

displacement in the punch press (shown as a goal of zero meters of displacement in

Figure 1). This problem also specifies that the punch should only be displaced by .25m.

In addition to these constraints a number of other objectives can be specified such as

minimizing the cost and weight of the device. Once a problem and all of the associated

objectives have been specified, A-Design’s iterative design process attempts to produce a

design that optimizes these design goals by working at both the configuration and

component levels. Components are taken from a user-defined catalog that contains

information about actual parts.

Figure 1

3.1. Iterative Design Process

A-Design’s iterative design process is similar to a genetic algorithm because in

each iteration a number of new design candidates are produced by the system, and then

the best of these designs are chosen to be the basis for the production of new designs in

the next iteration. The basic structure of A-Design’s iterative design process is shown in

Figure 2 along with the set of agents associated with each part of the process.

7
The design process begins with a set of configuration agents (C-agents) who

construct candidate designs using a library of embodiments. Each C-agent adds one

embodiment to an incomplete design until either the design is complete or a maximum

number of embodiments have been added to the design. A candidate design starts off as

just a set of input and output constraints to which components can be added. These input

and output constraints are represented in structures called functional parameters (FPs).

An FP represents the characteristics of an interface between components, and a C-agent

utilizes the qualitative information in an FP to determine which embodiments in the

embodiment catalog can be connected to the incomplete design. The embodiment catalog

contains information about types of components, but these components are not

instantiated with actual parameter values such as length, resistance, etc. While this

embodiment catalog is user defined, Chen and Brown (2002) have shown that it may be

possible for A-Design to modify this catalog itself. There is also a second catalog, the

component catalog, which contains a number of instantiated versions of each

embodiment. This component catalog is used by the I-agents as described below. Once an

embodiment is added to one of the FPs, the free ports of the embodiment are included as

new FPs where future embodiments can be attached. A form of qualitative reasoning is

used to update the constraints in the incomplete design as each embodiment is added. A

candidate is complete once it has connected the input and output FPs and has

qualitatively satisfied the input and output constraints. A C-agent chooses which

embodiment to add to an incomplete design based on a set of preferences built into the

agent, the current state of the incomplete design, and other influences originating from

the manager agents in the system. For example, some C-agents may prefer hydraulic

components while others prefer electrical ones or components connected in series over

ones connected in parallel. The current state of the design can also influence which

embodiment a C-agent selects. If a device should have a bounded displacement at the

output such as in the punch press example in Figure 1, then an agent would prefer

components which accomplished this goal when added to the system. The C-agents’

choices are also influenced by feedback they receive from manager agents in the system

as discussed below. Once the set of C-agents have constructed a set number of designs

these designs are passed to a group of instantiation agents (I-agents).

8

Figure 2

I-agents take the configuration designs from C-agents and instantiate the

parameters in the system with values obtained from a catalog of components. Each

embodiment in the configuration has a set of parameters such as length, weight, or

resistance. These agents also have a set of built in preferences. For example, some I-

agents may prefer using components that are low cost while others prefer those that are

low weight. Once all of the components in a design have been instantiated, equations that

describe the behavior of the design can be extracted. These equations allow the design to

be evaluated on how well it satisfies the constraints of the given problem. For example,

the equations extracted from a punch press design are then used to evaluate how much

the handle is displaced since that is one of the specified constraints. In this

implementation, each device is evaluated along the dimensions specified in the problem,

and these evaluations are combined into a linearly weighted sum. All of the devices are

then sorted by this sum and Pareto optimal, good (based on weighting), and poor devices

are separated based on this ordering. These design partitions are then passed to a set of

manager agents (M-agents). For the purposes of the work in this paper Pareto and good

designs are both lumped into one category of good designs. The A-Design system still

distinguishes between the two, but the chunking and memory mechanisms described

below treat good and Pareto designs in the same way.

M-agents take the current design population and produce feedback that controls

how other agents in the system operate. First, the agents which contribute to good and

poor designs are examined and the probabilities controlling how often those agents

contribute to designs are adjusted. A C-agent that contributed to a number of good

designs will be called more frequently than one who contributed to many poor designs.

The M-agents keep track of the number of good designs that each C/I-agent contributes

to, and the probability that a specific C/I-agent will be called upon in the future is a

function of its past success. These statistics are used for all of the agents except for the

M-agents. Managers also look for trends in the design population. Trends are groups of

agents or connected embodiments that appear together in a number of designs (see

example in Figure 3). Good trends are found by examining the best designs, and bad

9
trends are extracted from the worst designs. In this implementation, the six best designs

and the six worst designs are used to extract trends. Good trends are placed on a “todo”

list and bad trends on a “taboo” list. These lists work by encouraging agents to reproduce

combinations of agents or embodiments that are on the todo list and discouraging agents

from reproducing the groupings on the taboo list. In this manner, the todo/taboo lists

allow the M-agent to influence the designs that are generated in the next iteration of the

design process, but they exert this influence only within a given run on a single problem.

In addition to passing the good designs from the current iteration into the next

iteration, all good designs are passed to fragmentation agents (F-agents), who take out

one or more components of the design. These fragmented designs are then reconstructed

and become part of the next iteration’s design population. This fragmentation process

allows good designs to propagate similar designs to the next iteration with the hope that

the changes made to each design will improve it. The design population now consists of

the good designs plus the newly reconstructed designs. In the next iteration the C-agents

produce the number of new designs necessary to bring the design population back to the

original number of designs. This design population level is a parameter of the system.

This iterative process is the basis of the A-Design system.

Figure 3

4. Learning Across Problems in A-Design

In this work, we extended A-Design so that it could learn knowledge from its

design experiences for application to future designs. In order to do this A-Design needed

to be able to extract knowledge from its design problem solving activities, and once it had

this knowledge there had to be some way of applying it to new design problems. One

type of information that A-Design already knew how to extract was the good trends in a

set of designs produced in a single iteration. The sets of interconnected embodiments that

appear on the todo list are subsystems that appear in a number of good designs, and so it

is likely then that these subsystems perform well in the current problem and may be

worth remembering for future use.

10
A-Design’s design process is a series of iterations in which the current designs

perform the same as or better than those in the previous iteration, and so the subsystems

found on the todo list in the final iteration are the ones from the best designs produced.

These subsystems were chosen as the ones to be remembered in the memory store. Each

subsystem appearing on this list is extracted and placed into memory as a chunk of

knowledge. A subsystem from the todo list usually has many open ports to which

additional embodiments can be attached. It is also desirable to be able to call one of these

open ports the input to the subsystem and to call another port the output. In order to

identify input and output ports, the new system randomly selects one of the designs that

the subsystem appeared in before it was placed on the todo list. The embodiment closest

to the input of the original design is labeled as the input to the subsystem, and the same

process is done to label one port the output. Each chunk is then placed in memory and

indexed by its input and output constraints since this is the only information that is

needed to determine if a component can be added to an incomplete design by the C-

agents in the system.

An example chunk consisting of a belt and pulley connected together is shown in

Figure 4. This chunk extraction process is only half of the knowledge transfer process.

After a knowledge base of chunks has been constructed, a new set of C-agents is needed

that have the ability to add chunks from memory to designs during the configuration part

of the design process. These memory agents (Mem-agents) add components to

incomplete designs just as the C-agents do except that they are adding chunks from

memory instead of embodiments from the embodiment catalog. There is a three step

process by which a chunk is added to a design (Figure 5). First, a memory agent is called

to work on an incomplete design. The memory agent then examines the open FPs in the

system to determine where chunks may be added. The agent then looks in memory for a

chunk that is compatible with one or more of the FPs in the design and adds this chunk.

As mentioned before, all chunks are indexed in memory by their input and output

constraints which are essentially the input and output FPs for the chunk. Chunks can then

be retrieved from memory either based on their input, their output, or both. Each of these

retrieval methods is embodied in one Mem-agent. For example, the Mem-agent

implementing the input retrieval strategy will search for chunks in memory whose input

11
constraints match one of the open FPs in the design, but the input-output Mem-agent

would search for chunks in memory whose input/output constraints match two open FPs,

one for input and one for output.

Figure 4

Figure 5

There are some cases in which multiple chunks in memory are retrieved as

potential chunks to be added to a design. In this case, a Mem-agent needs a way of

determining which chunk to add. The chunk could just be randomly selected from all

possible chunks, or there could be some form of learning that takes place within the

memory agent that allows it to pick the chunk most likely to produce a good design. The

second option was implemented and is based on learning mechanisms found in the ACT-

R model of human memory (Anderson & Lebiere 1998). Each memory agent is informed

about the consequences of its actions by the manager agent, and the memory agent can

then use this feedback to choose among multiple chunks when it has to. When a Mem-

agent adds a chunk to a design, the design can either end up being evaluated as a good

design or a poor design as discussed above. The proportion of good designs that result

from using a particular chunk is calculated by dividing the number of good designs the

chunk was used in by the number of times the chunk was used. This proportion is

calculated based on design evaluation data from the previous five iterations. When

multiple chunks are retrieved, the probability that any particular one is chosen is just the

proportion of good designs for that chunk divided by the sum of the proportions for all of

the chunks retrieved from memory. If the proportion of good designs for a particular

chunk is below some minimum level then this minimum proportion is used instead of the

actual value so that every chunk has at least a small probability of being chosen

regardless of its past performance. These proportions are updated dynamically each

iteration to include information about good and poor chunks from the previous five

iterations. This mechanism is also similar to the strategy for move selection in the

simulated annealing algorithm found in (Hustin & Sangiovanni-Vincentelli 1987). Each

of the three Mem-agents maintains a separate set of these statistics because different

12
chunks in memory may be more suited to one of the three memory retrieval strategies

outlined above.

These additions to A-Design give it the basic capabilities of noticing and storing

common co-occurring elements in chunks, noticing when a current design can be

augmented with information from memory, and the ability to learn which chunks in

memory perform the best in a given design problem. In general, one of these chunks

serves as a way from getting from a certain type of interface and energy to another type

of interface and energy. This allows for a type of abstract knowledge to be gained

through the chunking of patterns of components. These basic mechanisms should allow

the system to accumulate some amount of expertise in design problem solving. Similar

chunking mechanisms are well documented learning processes in human cognition, and

the chunking described above is similar to the way in which certain types of knowledge

are acquired in the process of becoming an expert in some domains such as chess and Go

(Chase & Simon 1973; Reitman 1976). There are also some similarities between A-

Design’s chunking of common design elements and the way in which certain types of

cognitive architectures chunk together problem solving steps (i.e. SOAR, Newell 1990).

5. Testing Learning

The chunk learning mechanism of A-Design was tested to see if it allowed the

system to learn both within and between problems. Learning within the same problem is

simply the case where A-Design works on a design problem, learns chunks, and then

works on the same design problem again with the new chunks. Within problem learning

should indicate whether the chunking mechanism is allowing the system to learn and

apply useful knowledge about the design problem. Between problem learning occurs

when A-Design applies chunks learned in one problem to a new design problem, and it is

this type of knowledge transfer that the chunking mechanism was designed to

accomplish.

Within problem learning was evaluated by running A-Design 20 times on one

problem, and in each of these runs, a set of chunks was generated from the final design

population. A-Design was then run again on the same problem 20 times, once with each

13
of the 20 sets of learned chunks. The number of iterations in each run was 60, and the

design population was set to 120 designs. A graph of A-Design’s performance on a

design problem can be constructed by taking the evaluation score for the best design at

each iteration and averaging this evaluation across all twenty runs of the problem. This

leads to a graph similar to Figure 6 in which each line in the figure shows A-Design’s

average performance on one design problem. The performance difference between the

initial problem and the second attempt at the problem was measured in three ways (see

Figure 6). The evaluations of the initial designs, the evaluations of the final designs, and

the number of iterations until a specified evaluation level is reached can be compared.

The comparison of the number of iterations can be looked at as the number of iterations

that were saved by the presence of chunks and it will be referred to as a measure of

savings. The criterion evaluation level for each problem presented here is just the average

evaluation score obtained in the final best design without using a set of stored chunks, i.e.

just the performance of the A-Design system without the new learning mechanism. Any

statistically significant differences in performance from the first attempt to the second can

then be attributed to the chunks that were used in the second attempt.

This measure of savings was calculated by recording the iteration at which each

run of A-Design reached the criterion level. If an individual run did not reach the

criterion level by the end of 60 iterations, then the number of iterations to criterion was

just taken to be 60 for that run. The average number of iterations for a given condition

can then be calculated by averaging the number of iterations to criterion for each of the

20 runs in a condition. The average number of iterations to criterion can then be

compared for any two conditions (i.e. for chunk and no chunk conditions). This yields a

conservative estimate of the amount of savings since each run is capped at 60 iterations

even if it would have taken longer to reach criterion.

Figure 6

Another potential metric that should be kept in mind is the actual running time for

A-Design to finish a set of 60 iterations as outlined above. In general, the Mem-agents

are computationally more expensive than normal C-agents. It is useful to determine if

these extra costs significantly impact the running time. Run time results were examined

14
for all three problems, and it was found that the average time for the completion of one

iteration did not differ significantly when Mem-agents were used. Therefore any benefits

of the chunking processes do not come at the expense of significantly increased run time.

5.1. Design Problems

Three electromechanical design problems were used to assess the benefits of the

chunking mechanism: a punch press, a pressure gauge, and a weighing machine. The

punch press problem is the same as described above, a handle is pulled which forces a

punch through some material at the output. Punch presses are evaluated based on their

cost, the amount of input handle displacement, and how closely they conform to the

specified output displacement and force. The pressure gauge problem has an input

pressure source and the output is a dial display that reflects the amount of pressure

coming from the pressure source, and this problem is evaluated on the cost, mass,

efficiency, and dial accuracy of the gauge. The weighing machine as defined by

(Campbell et al. 1999) takes a force input on a footpad and has a dial output, and it is

evaluated on the cost, mass, dial accuracy, and input displacement of the device. An

example of the linearly weighted evaluation function is presented in Figure 7. The

evaluation function deals with real quantities like dollars, radians, and grams so the scales

are difficult to interpret when combined with the weights. The relative weighting is the

most important aspect of the evaluation function for our purposes. For example, the

weights presented in Figure 7 emphasize dial accuracy while placing little emphasis on

cost. In this equation, characteristics like cost can be read from the cost of the

components, but to evaluate accuracy a behavioral equation must be extracted from the

design so that accuracy can be calculated. Some example designs produced by A-Design

for these problems are presented in Figure 8. These example designs are typical of the

kinds of solutions A-Design produces for each problem. The component catalog used in

this research is the same as the one that has been presented in previous A-Design work

(Campbell 2000; Campbell et al. 1999, 2000). The only additions to the catalog were the

input and output components for the new problems, such as the handle and punch for the

punch press problem.

15

Figure 7

Figure 8

These specific problems were utilized to provide both a problem that was similar

to the weighing machine as well as a problem that was significantly different from the

weighing machine. The pressure gauge is a measurement device with a dial output just

like the weighing machine. However, the goal of the punch press is to amplify the small

input force so that it is sufficient to drive a punch through some material. It was thought

that this problem shares little with the weighing machine so it was used to evaluate how

context dependent A-Design’s new knowledge capabilities would be. For example, if A-

Design learned design chunks from the weighing machine problem, then these chunks

might be easier to apply in the pressure gauge problem since this problem is similar to the

weighing machine. On the other hand, applying these same design chunks to the punch

press might be more difficult and potentially less useful because the punch press does not

have as much in common with the weighing machine. This means that the similarity

between the devices probably has an impact on which learned chunks are transferred

successfully.

The specific evaluation function used to evaluate a device does have an impact on

the chunks learned from that design experience. For example, a pressure gauge design

that minimizes cost above all else would be different from a design which primarily

emphasizes the accuracy of the gauge. These different designs would lead to different

chunks, and it may be that these chunks will transfer best to designs that have a similar

emphasis in their evaluation functions. This aspect of chunking is not explored in the

current work. Our primary goal was to evaluate the viability of the simple chunking

mechanism described above. We tried to keep the emphasis in the evaluation functions as

constant as possible. For example, both the weighing machine and the pressure gauge

evaluations emphasize accuracy more than any other criteria.

Two sample chunks are shown in Figure 9. Figure 9a shows a chunk learned by

A-Design while solving the weighing machine problem. This chunk was then used in the

production of pressure gauge designs, and in particular, this chunk was used in the design

16
of the pressure gauge shown in Figure 8. Figure 9b is another example of a chunk learned

in the weighing machine problem, and it was used in the production of the punch press

design seen in Figure 8. The first chunk is larger as it contains 7 components as opposed

to the smaller chunk composed of two components. Larger chunks were more frequently

transferred between the weighing machine and pressure gauge problems than between the

punch press and other problems. This finding was not unexpected and is due to the degree

of similarity among the problems as noted above.

Figure 9

6. Results

6.1. Within problem results

Within problem results for the three design problems can be seen in Figures 10-12

and Tables 1-3. There appears to be within problem learning in each of the three

problems (lower evaluation scores are better). A series of paired t-tests was run to assess

the statistical significance of any differences in the three performance measures discussed

above. In some cases the assumptions of the t-test did not hold (such as equal variances).

In these cases nonparametric statistical tests were also run, but the results from these tests

did not differ from those of the t-tests.

6.1.1. Weighing Machine

In the weighing machine problem only the comparison of the initial designs was

not significantly different, t(19) = 1.19, p = .12, but both the comparison of the last

designs, t(19) = 2.47, p = .01, and the amount of savings, t(19) = 3.73, p < .001, were

significant. On average, the final design produced without chunks had an evaluation of

21.7 as compared to 19.3 with chunks, and the number of iterations required to reach an

evaluation of 21.7 was 45.6 without chunks and 30.7 with chunks, 33% fewer iterations.

Figure 10

17

6.1.2. Pressure Gauge

In the pressure gauge problem the comparison of initial designs, t(19) = 2.14, p = .

02, and savings, t(19) = 1.82, p = .04, were significant, but the comparison of final design

evaluations was not, t(19) = 1.19, p = .12. On average, the initial design produced without

any chunks was 50,302 as compared to 35,358 with chunks, and the number of iterations

required to reach an evaluation of 3,258 was 44 without chunks and 32.7 with chunks,

26% fewer iterations.

Figure 11

6.1.3. Punch Press

In the punch press problem the comparison of initial designs, t(19) = 3.32, p = .

002, final designs t(19) = 3.34, p = .002, and savings, t(19) = 2.73, p = .007, were

significant. On average, the initial design evaluation produced without any chunks was

9,046 as compared to 6,675 with chunks, the final design produced without any chunks

was 1,658 compared to 1,016 with chunks, and the number of iterations required to reach

an evaluation of 1,658 was 38.9 without chunks and 23 with chunks, 41% fewer

iterations.

Figure 12

6.2. Between problem results

The results for between problem transfer can be seen in Figures 13-15 and Tables

4-6. For each problem, a one way ANOVA was run for each comparison followed by a

series of planned contrasts if the ANOVA indicated any significant differences. In some

cases the assumptions of the ANOVA did not hold (such as equal variances). In these

cases nonparametric statistical tests were also run, but the results from these tests did not

differ from those of the ANOVAs.

18

6.2.1. Weighing Machine

Figure 13 indicates that the three conditions perform about the same, and there

were no significant differences in initial evaluations, F(2,57) = .74, p = .24, final

evaluations, F(2,57) = .06, p = .47, or savings, F(2,57) = .804, p = .23, for the weighing

machine problem. Thus neither the pressure gauge nor the punch press chunks produced

significant improvements in the weighing machine problem. In this case, the within

problem transfer results outperformed all cases of between problem transfer.

Figure 13

6.2.2. Pressure Gauge

Figure 14 indicates that the two conditions with chunks perform better than

solving the problem with no previous knowledge. There were significant differences in

final evaluations, F(2,57) = 2.94, p = .03, and savings, F(2,57) = 4.53, p = .008, but not

for the initial evaluations, F(2,57) = .9, p = .21. A series of contrasts reveal that chunks

from the weighing machine problem allow the system to produce better designs than the

no chunk condition, and both the weighing machine and punch press chunk conditions

produce significant savings when compared to the no chunk condition. Final design

evaluations in the weighing machine chunk condition had an average of 2,766 while the

average in the no chunk condition was 3,258. Chunks from the weighing machine

problem help the system to reach an evaluation of 3,258 in 28.8 iterations as compared to

44 iterations for the no chunk condition, and chunks from the punch press problem also

allow the system to reach the criterion evaluation in 29 iterations, 34-35% fewer

iterations in both cases. It can also be seen (Figures 14 and 11) that within problem

transfer produced similar quality final designs and reached criterion in a similar number

of iterations as did the two between problem transfer conditions. In fact, the two between

problem transfer cases appear to outperform the within problem transfer, but these

differences were not statistically significant.

Figure 14

19

6.2.3 Punch Press

Figure 15 indicates that the two conditions with chunks perform better than

solving the problem with no previous knowledge. There were significant differences in

final evaluations, F(2,57) = 4.09, p = .01, but not for the initial evaluations, F(2,57) = .65,

p = .26, or savings, F(2,57) = 1.37, p = .13. A series of contrasts reveal that both of the

chunk conditions produce significantly better final designs when compared to the no

chunk condition. Final design evaluations in the weighing machine chunk condition had

an average of 1,298 and in the pressure gauge chunk condition the average was 1,271,

while the average in the no chunk condition was 1,658. The within problem transfer case

(Figure 12) outperformed between problem transfer in this problem.

Figure 15

7. Discussion

The chunking mechanism did produce successful knowledge transfer in most

cases. Transfer was found in most cases where it was expected, but interestingly there

was no significant between problem transfer when working on the weighing machine

problem. This was unexpected because of the similarity of the weighing machine and

pressure gauge problems, and because there was transfer from the weighing machine

problem to the pressure gauge problem. Performance on the punch press problem

improved regardless of the types of chunks used which may indicate some unexpected

similarities between the punch press and the other problems or the existence of some

chunks that work regardless of the problem context in which they were learned. In

general, within problem transfer was the most effective type of transfer as none of the

between problem cases significantly outperformed the within problem case in any of the

problems. Knowledge transfer within the same problem produced improvements in two

to three of the performance measures in each problem. In the cases where significant

between problem transfer did occur, the performance measures that improved were the

final design evaluations and the savings measure. So while the knowledge from another

20
problem did not produce better initial designs in any of the three problems, it was able to

improve performance throughout the iterative design process.

This eventual but not immediate improvement due to transfer could indicate that

the chunks learned by the system could only be applied to a new problem at some late or

intermediate stage of the design process. Another explanation is that only some of the

chunks learned in another problem are beneficial to the current problem, and it takes

many attempts to find which of the chunks are beneficial when applied to the current

design problem. An analysis of the data produced by the system indicates that certain

chunks did come to be preferred by the system in a certain problem, and this was mostly

due to the success statistics that are accumulated by Mem-agents as discussed previously.

It is also possible that some of the chunks had to be slightly modified in order to produce

improvements in a particular problem, and this modification process did appear to

operate as discussed below.

It was hypothesized that most of the between problem transfer would occur

between the weighing machine and pressure gauge problems due to their similarity. In the

pressure gauge problem, the within problem chunks lead to the most improvement

followed by the chunks from the weighing machine problem and finally the punch press

chunks. This graded transfer makes sense as it is easiest for the system to apply

knowledge from the same problem and somewhat more difficult to apply knowledge

from a similar problem. However, in the weighing machine problem there was no

significant between problem transfer at all. This behavior appears to be caused by the

embodiments that occur in the chunks learned from the pressure gauge problem. Every

pressure gauge takes some pressure source as its input, and, given the catalog that was

supplied, the only way A-Design has of transforming this pressure source into a

translational motion is by using a hydraulic cylinder. So all pressure gauges have

cylinders in them, and since chunks are found by extracting commonalities, a large

portion of the chunks learned by A-Design in this problem have the cylinder embodiment

in them. None of the best weighing machine designs produced had cylinders in them

because of the high cost of this embodiment, and so these pressure gauge chunks do not

appear to be very useful in the weighing machine problem. This seems like the most

likely cause of the asymmetric transfer.

21
The results from the punch press problem were also a little surprising. It was

originally thought that this problem had few similarities to either the weighing machine

or pressure gauge problems, but in both cases transfer to the punch press improved

results. One similarity that does exist between the pressure gauge and punch press

problems is that good designs produced for both problems contain hydraulic cylinders,

and it could be that this similarity made it easier to transfer chunks from one problem to

the other. There were no such similarities noted for the weighing machine problem and

the punch press problem though, and so this does indicate that at least some of the chunks

learned in the weighing machine problem are useful even in dissimilar problems. These

chunks were mostly small chunks like the one presented in Figure 9b, and these types of

chunks are applicable in a wide number of designs.

It was also found that in a few cases A-Design’s preexisting mechanisms

interacted with the new Mem-agents to generalize learned chunks to new problems. In

particular, if a chunk was useful enough that the design it was incorporated in was

evaluated as a good design, then this design passed through the fragmentation process

and was reconstructed. In this manner, F-agents were able to contribute to the utility of

some chunks since parts of the chunk that did not contribute to improving the overall

design quality had a chance to be removed while other parts of the chunk remained. This

mechanism was an unexpected interaction between preexisting processes and the new

chunking mechanisms, and it contributed to the success of the memorized chunks since

they could be adapted to the new design problem. However, this mechanism was not able

to overcome the presence of the cylinder in the pressure gauge chunks. One reason for

this is that the cylinder is an expensive component, and its inclusion in a weighing

machine will cause the design to evaluate poorly with respect to the many other less

expensive weighing machine designs. This would mean that this chunk would never be in

a good design, and so it would never reach the F-agents.

These results indicate that this chunk storage mechanism is a useful learning

mechanism and has the potential to be an even more useful general learning mechanism

with some further modifications. A-Design could adapt the learned chunks to new

problems, and this learning mechanism could be combined with a more general analogy

or reasoning mechanism to make the learned chunks even more beneficial. The necessity

22
for a more general mechanism can be seen by A-Design’s inability to get around the

predominance of hydraulic cylinders in the chunks learned in the pressure gauge problem

in order to use them in the weighing machine problem. However, just this basic chunking

mechanism was enough to enable the system to exhibit significant improvements on most

problems in the number of iterations needed to produce designs of equal or better quality

when compared to the system without chunking.

These results can be taken to reflect the widespread utility of chunking as it is

found in cognitive structures in a variety of domains. As mentioned before, A-Design’s

chunking process is based on work in cognitive psychology which shows that building up

an organized structure of domain relevant chunks is one component of the acquisition of

expertise (Chase & Simon 1973; Egan & Schwartz 1979; Reitman 1976; Richman et al.

1995). In this manner experts begin to work with larger and more sophisticated units of

knowledge as they gain experience. This network of knowledge can make solving

common problems more efficient within the area of expertise (Larkin et al. 1980). A-

Design currently has the ability to store chunks of knowledge, but these chunks are not

highly organized in a hierarchical structure as they would be in an expert. Also, the

existence of chunks only makes moderate changes to the way A-Design solves problems.

While these limitations highlight A-Design’s shortcomings as a cognitive model of

engineering design, they also provide some indication of the potential advances that

could be made through a better understanding of the cognitive processes involved in

engineering design.

8. Conclusions

Overall, there was some success in producing knowledge transfer with a basic

chunking mechanism. The mechanism takes advantage of A-Design’s preexisting trend

finding function to extract chunks, and all that was required to use these chunks was a

new type of configuration agent that looks in a memory store of chunks instead of the

embodiment library. This method of knowledge transfer still relies on the power of

computational search in A-Design’s iterative design process. This mechanism was able to

produce impressive results when transferring chunks between problems. The system

23
operates on embodiment level similarities between problems, and, using only a basic

approach, lacks a more powerful method of transfer. Such a transfer mechanism would

probably rely on more knowledge based methods in addition to or instead of brute force

computational search. For example, processes such as abstraction, qualitative reasoning,

and analogy can produce knowledge transfer that operates across vastly different

problems and domains. Even with the current limited processes, A-Design’s transfer

results are reminiscent of transfer results in cognitive psychology.

Research looking at knowledge transfer has shown that similarities between

problems are one of the most important factors that determine the amount of transfer

(Holyoak & Koh 1987; Kotovsky & Fallside 1989). Finding similarities between two

different problems is also a key to using analogy (Falkenhainer, Forbus, & Gentner 1989;

Holyoak & Thagard 1995). Analogy can be a powerful mechanism by which people can

apply knowledge from one domain to another, and analogy may help an engineer map

previous experiences onto novel design problems. However, all of these transfer

processes operate on the contents of memory, and therefore a better understanding of the

structure and content of the memories of expert designers will aid in understanding how

such transfer processes operate. Cognitive science research has identified a number of

general properties of expert memory in many other domains such as its hierarchical

organization and chunking properties (Chase & Simon 1973; Egan & Schwartz 1979;

Ericsson, Chase, & Faloon 1980; Patel & Groen 1991; Reitman 1976; Richman et al.

1995). We have also been extended this type of work to deal directly with expertise

differences in engineering design (Moss, Kotovsky, & Cagan 2003). Our work highlights

some of the differences in device representation that are associated with the early

acquisition of expertise in engineering design. These results combined with new work on

understanding the cognitive processes underlying design will yield a number of benefits

including the construction of more knowledgeable design automation and assistance

tools. A-Design has been the basis for our initial exploration into incorporating cognitive

principles into design systems, and further research in this area should yield benefits for

computational design systems and, we hope, lead to a better understanding of the

cognitive processes underlying the design process.

24

Acknowledgments

The authors would like to acknowledge the assistance and support provided by

Matthew Campbell while learning the intricacies of the A-Design system and while

generating some initial ideas on how the system could be extended.

This research effort was partially sponsored by a National Defense Science and

Engineering Graduate Fellowship and by the Air Force Office of Scientific Research, Air

Force Material Command, USAF, under grant number F49620-01-1-0050. The U.S.

Government is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright annotation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of AFOSR or the U.S.

Government.

References

Anderson, JR, Lebiere, C (1998) The atomic components of thought. Lawrence Erlbaum, Mahwah, NJ
Bhatta, SR, Goel, AK (1996) From design experiences to generic mechanisms: Model-based learning in analogical

design. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 10(2): 131-136
Brown, DR, Hwang, KY (1993) Solving fixed configuration problems with genetic search. Research in Engineering

Design, 5(2): 80-87
Campbell, MI (2000) The A-Design invention machine: A means of automating and investigating conceptual design.

Unpublished Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA
Campbell, MI, Cagan, J, Kotovsky, K (1999) A-design: An agent-based approach to conceptual design in a dynamic

environment. Research in Engineering Design, 11(3): 172-192
Campbell, MI, Cagan, J, Kotovsky, K (2000) Agent-based synthesis of electromechanical design configurations.

Journal of Mechanical Design, 122(1): 61-69
Campbell, MI, Cagan, J, Kotovsky, K (2003) The A-Design approach to managing automated design synthesis.

Research in Engineering Design, 14(1): 12-24
Chase, WG, Simon, HA (1973) Perception in chess. Cognitive Psychology, 4(1): 55-81
Chen, ZF, Brown, DR (2002) Explorations of a two-layer A-Design system. Paper presented at the Workshop on

Agents in Design, Cambridge, MA.
Domeshek, EA, Kolodner, JL (1991) Toward a case-based aid for conceptual design. International Journal of Expert

Systems, 4(2): 201-220
Egan, DE, Schwartz, BJ (1979) Chunking in recall of symbolic drawings. Memory & Cognition, 7(2): 149-158
Ericsson, KA, Chase, WG, Faloon, S (1980) Acquisition of a memory skill. Science, 208(4448): 1181-1182
Falkenhainer, B, Forbus, KD, Gentner, D (1989) The structure-mapping engine - algorithm and examples. Artificial

Intelligence, 41(1): 1-63
Goel, AK, Bhatta, SR, Stroulia, E. (1997) Kritik: An early case-based design system. In M. L. Maher & P. Pu (Eds.),

Issues and applications of case-based reasoning in design (pp. 87-132). Mahwah, NJ: Lawrence Erlbaum
Holyoak, KJ, Koh, K (1987) Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4): 332-

340
Holyoak, KJ, Thagard, P (1995) Mental leaps: Analogy in creative thought. The MIT Press, Cambridge, MA
Howe, AE, Cohen, PR, Dixon, JR, Simmons, MK (1986) Dominic: A domain-independent program for mechanical

engineering design. Artificial Intelligence in Engineering, 1(1): 289-299

25
Huhns, MN, Acosta, RD (1988) Argo - a system for design by analogy. IEEE Expert-Intelligent Systems & Their

Applications, 3(3): 53-68
Hustin, S, Sangiovanni-Vincentelli, A (1987, April) Tim, a new standard and cell placement program based on the

simulated annealing algorithm. Paper presented at the IEEE Physical Design Workshop on Placement and
Floorplanning, Hilton Head, SC.

Kotovsky, K, Fallside, D. (1989) Representation and transfer in problem solving. In D. Klahr & K. Kotovsky (Eds.),
Complex information processing: The impact of herbert a simon (pp. 69-108). Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

Larkin, J, McDermott, J, Simon, DP, Simon, HA (1980) Expert and novice performance in solving physics problems.
Science, 208(4450): 1335-1342

Moss, J, Kotovsky, K, Cagan, J (2003) Knowledge representation in engineering design: An initial investigation. Paper
presented at the Twenty-Fifth Annual Conference of the Cognitive Science Society, Boston, MA.

Newell, A (1990) Unified theories of cognition. Harvard University Press, Cambridge, MA
Patel, VL, Groen, GJ. (1991) The general and specific nature of medical expertise: A critical look. In K. A. Ericsson &

J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 93-125). New York: Cambridge
University Press

Reitman, JS (1976) Skilled perception in Go: Deducing memory structures from inter-response times. Cognitive
Psychology, 8(3): 336-356

Richman, HB, Staszewski, JJ, Simon, HA (1995) Simulation of expert memory using epam iv. Psychological Review,
102(2): 305-330

Sycara, K, Chandra, DN, Guttal, R, Koning, J, Narasimhan, S (1991) Cadet: A case-based synthesis tool for
engineering design. International journal of expert systems, 4(2): 157-188

Szykman, S, Cagan, J (1995) A simulated annealing-based approach to 3-dimensional component packing. Journal of
Mechanical Design, 117(2): 308-314

Ulrich, KT (1989) Computation and pre-parametric design. Unpublished doctoral dissertation, MIT, Cambridge, MA
van de Wiel, MWJ, Boshuizen, HPA, Schmidt, HG (2000) Knowledge restructuring in expertise development:

Evidence from pathophysiological representations of clinical cases by students and physicians. European Journal
of Cognitive Psychology, 12(3): 323-355

Welch, RV, Dixon, JR (1994) Guiding conceptual design through behavioral reasoning. Research in Engineering
Design, 6: 169-188

26
Figure 1. The specification for the punch press problem.

Figure 2. A-Design’s iterative design process (adapted from Campbell et al. 1999).

Figure 3. An example trend found by intersecting multiple designs with the overlapping components

circled.

Figure 4. An example design chunk

Figure 5. Memory agents retrieve chunks from memory

Figure 6. An illustration of the three measures of performance

Figure 7. An example evaluation function used for the pressure gauge

Figure 8. Sample solutions produced by A-Design for each of the three design problems.

Figure 9. Sample chunks learned from the weighing machine problem and used in the pressure gauge and

punch press problems in Figure 7.

Figure 10. Within problem results for the weighing machine problem

Figure 11. Within problem results for the pressure gauge problem.

Figure 12. Within problem results for the punch press problem.

Figure 13. Between problem results for the weighing machine problem

Figure 14. Between problem results for the pressure gauge problem.

Figure 15. Between problem results for the punch press problem.

27
TABLE 1. Within problem performance measures for the weighing machine.

Initial evaluations Final evaluations Iterations to criterion

μ σ μ σ μ σ

No chunks 773 1001 21.7 4.90 45.6 16.0

Using within problem chunks 465 632 19.3 3.29 30.7 20.3

28
TABLE 2. Within problem performance measures for the pressure gauge.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 50,302 25,775 3,258 807 44.0 18.0
Using within problem chunks 35,358 26,275 3,005 643 32.7 23.5

29
TABLE 3. Within problem performance measures for the punch press.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 9,046 1,327 1,658 524 38.9 21.4
Using within problem chunks 6,675 2,762 1,016 517 23.0 18.7

30
TABLE 4. Between problem performance measures for the weighing machine.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 773 1001 21.7 4.90 45.6 16.0
Using pressure gauge chunks 700 1397 21.2 4.21 49.5 12.6

Using punch press chunks 405 352 21.4 4.73 43.2 18.4

31
TABLE 5. Between problem performance measures for the pressure gauge.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 50,302 25,775 3,258 807 44.0 18.0
Using weigh. machine chunks 42,190 23,483 2,766 441 28.8 18.7

Using punch press chunks 52,670 2,8337 2,889 705 28.9 18.4

32
TABLE 6. Between problem performance measures for the punch press.

Initial evaluations Final evaluations Iterations to criterion
μ σ μ σ μ σ

No chunks 9046 1327 1658 524 38.9 21.4
Using weigh. machine chunks 8583 1493 1298 413 28.7 20.0

Using pressure gauge chunks 8472 2139 1271 491 30.7 20.9

33

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

34

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

Feedback

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

C-agents

I-agents M-agents

F-agents
Input/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo

d
D

es
ig

ns

Fragments

Good
Designs

Poor
Designs

Feedback

35

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

shaft dial

footpad
gear

spring

ground

torsion spring ground

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

resistor

motor

shaft dial

footpad gear

cylindercylinder

ground

spring

ground

bearing

lever

rack

shaft dial

footpad
gear

spring

ground

torsion springtorsion spring ground

36
Design Chunk
Belt-pulley-chunk

Isa: design-chunk

Input-domain: translation

Input-interface: bolt

Output-domain: rotation

Output-interface: shaft-hole

Components: (belt pulley)

Connectivity: port-1 of component-1 is connected to port-1 of component-2

Design Chunk
Belt-pulley-chunk

Isa: design-chunk

Input-domain: translation

Input-interface: bolt

Output-domain: rotation

Output-interface: shaft-hole

Components: (belt pulley)

Connectivity: port-1 of component-1 is connected to port-1 of component-2

37

lever

rack

gear

spring

ground

Memory

Input

Output

Input Output

belt
pulley

spring

ground

Input
Output

Memory agent retrieves chunk

Output
FPInput

FP

FP
shaft dial

footpad

torsion spring ground

FP

Incomplete Design

Energy: Translation Energy: Rotation
Interface: Bolt Interface: Shaft

lever

rack

gear

spring

ground

Memory

Input

Output

Input Output

belt
pulley

spring

ground

Input
Output

lever

rack

gear

spring

ground

Memory

Input

Output

Input Output

belt
pulleypulley

spring

ground

Input
Output

Memory agent retrieves chunk

Output
FPInput

FP

FP
shaft dial

footpad

torsion springtorsion spring ground

FP

Incomplete Design

Energy: Translation Energy: Rotation
Interface: Bolt Interface: Shaft

38

A
vg

. D
es

ig
n

E
va

lu
at

io
n

No. of Iterations

Comparison of initial
designs

Comparison of final designs

Dashed line indicates level of
performance defined to be acceptable

A
vg

. D
es

ig
n

E
va

lu
at

io
n

No. of Iterations

Comparison of initial
designs

Comparison of final designs

Dashed line indicates level of
performance defined to be acceptable

39

100,10,10,1

cos

4321

4321

====
+++=

wwww

accuracywefficiencywmasswtwEvaluation

40

41

42
Weighing Machine - Within problem

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
va

lu
at

io
n

No chunks Weighing machine chunks

43

Pressure Gauge - Within Problem

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
v

al
u

at
io

n

No chunks Pressure gauge chunks

44 Punch Press - Within Problem

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
va

lu
at

io
n

No chunks Punch press chunks

45

Weighing Machine - Between Problems

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
va

lu
a

ti
o

n

No chunks Pressure gauge chunks Punch press chunks

46

Pressure Gauge - Between Problems

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
va

lu
at

io
n

No chunks Weighing machine chunks Punch press chunks

47

Punch Press - Between Problems

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

E
va

lu
at

io
n

No chunks Weighing machine chunks Pressure gauge chunks

