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Abstract. As engineering students gain experience and become 
experts in their domain, the structure and content of their knowledge 
changes. Two studies are presented that examine differences in 
knowledge representation among freshman and senior engineering 
students. The first study uses a recall paradigm, and the second uses 
Latent Semantic Analysis (LSA) to analyze brief descriptions written 
by engineering students. Both studies find that the most prominent 
differences between these two groups of students are their 
representations of the function of electromechanical components and 
how these components interact. The findings from these studies 
highlight some ways in which the structure and content of mental 
representations of design knowledge differ with experience. 

1. Introduction 

Engineering design is a domain in which a number of complex problem 
solving activities occur. As in all such tasks, cognitive processes operate 
upon the internal representations of the task as well as upon other relevant 
knowledge. These representations can change over the course of experience 
in order to enable a person to better respond to the problems and challenges 
of a domain. These representation changes are a reflection of the structure 
and content of a domain as well as the cognitive learning mechanisms 
responsible for the changes. 

One motivation for studying expertise is to learn more about the general 
cognitive mechanisms which allow people to become experts in some 
domain given sufficient learning and practice. Eventually a person acquires 
both knowledge structures and cognitive processes that are specific to the 
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domain of expertise and allow for efficient functioning within that domain. 
The knowledge structures and processes of expertise that arise are a function 
of both general cognitive mechanisms and the actual structure and content of 
the domain in which expertise is being acquired. This means that the content 
and to some extent the structure of the knowledge representation are 
determined by the particular domain of expertise. The structure of experts’ 
representations across different domains may show some similarities either 
because they are constructed by the same learning mechanisms or because 
the domains of expertise have some common characteristics. 

There are at least two types of reasons to study expertise in a particular 
domain. The first is to learn about the specific mental representations and 
cognitive processes employed by experts in that domain. This information is 
potentially beneficial in the design of cognitive aids that can assist experts or 
in improving the education of future experts in that domain. The second type 
of reason to study expertise in a domain is that it provides further insights 
into the cognitive learning mechanisms that produce the changes in 
representation and cognitive processes seen in expertise acquisition. One 
way to study these learning mechanisms is to see how they interact with the 
structure and content of a variety of domains in order to produce the mental 
structures and processes seen in experts across these domains. 

A number of domains of expertise have been studied, and there have been 
some general findings about how the structure of domain knowledge changes 
with experience in these tasks. For instance, in games like chess and Go, a 
hierarchical database of commonly occurring piece configurations appears to 
exist in experts but not in novices (Chase and Simon 1973, Reitman 1976). 
This knowledge aids the expert in classifying the current situation and 
identifying good moves. Similar types of hierarchical chunking have also 
been identified in electronics technicians (Egan and Schwartz 1979). One of 
the general findings in these and other areas of expertise is that a hierarchical 
knowledge structure is often a component of expertise. Other general 
findings in the expertise literature are that experts tend to work forward from 
the givens in the problem rather than backwards from the desired solution, 
and experts tend to classify items and problems in their domain of expertise 
according to a deeper conceptual structure rather than surface similarities 
(Chi et al. 1981, Larkin et al. 1980). 

Experts’ knowledge representations enable them to handle problems and 
process information differently than novices. For example, physics experts 
solve physics problems in a different manner than do novices (Larkin et al. 
1980). Physics experts can recognize and solve common problems in a more 
efficient manner than novices. In fact, in expertise it is common for the 
associated knowledge structures and processes to be such an integral part of 
the cognitive system that they affect the way the expert perceives the 
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environment. Chase & Simon (1973) argue that what they see is perceptual 
chunking, and elsewhere it has been shown that while domain knowledge 
does not directly transfer to other domains it can still influence the way 
people reason about more general situations outside of their domain of 
expertise (Nisbett et al. 1987). So another general property of expertise is 
that it affects not only what is stored in memory but also how things in the 
world are perceived and categorized. 

These effects of expertise all relate to the ability of the expert to process 
more domain information in a fixed period of time than can a novice. 
Experts have highly organized memory structures like schemas, templates, 
and retrieval structures (Gobet 1998, Richman et al. 1995). These memory 
structures allow for the easy retrieval and storage of domain information, and 
they affect how domain information is perceived. As information about a 
new problem is perceived, this information automatically activates relevant 
domain knowledge and processes. This allows experts to easily recognize 
and categorize information and solution schemas in their domain. Parts of 
the problem solving process are therefore more automatized in experts than 
they are in novices, and this enables experts to solve problems in a more 
efficient manner. In order to understand how experts in a domain solve 
problems it is necessary to examine the way domain information is 
represented. 

Understanding the representation changes that occur as engineering 
students progress toward becoming professionals is essential in achieving an 
understanding of the cognitive processes underlying performance in 
engineering design. As discussed below, there are a few studies that have 
examined cognition and expertise in engineering design through verbal 
protocols and other methods, but these studies usually deal with cognition at 
a coarse level and do not examine mental representation. The work presented 
here is an initial step towards a detailed examination of the representations 
and processes that allow engineers to perform the complex tasks required by 
their profession. This paper presents two studies which begin to answer the 
question of what kinds of representation changes accompany the transition to 
expertise. 

In particular, the studies presented here look at freshmen and senior 
engineering students in order to see what kind of representation changes 
accompany the early transition to expertise. The differences between 
freshmen and seniors may generalize to professional engineers upon further 
investigation, or alternatively the transition from student to professional may 
involve other qualitative changes in mental representation. Two different 
methodologies were utilized in examining representation differences in the 
two groups of students. The first study utilizes a recall paradigm that has 
been employed by a number of researchers looking at expert/novice 



4 J. MOSS, K. KOTOVSKY, AND J. CAGAN 

 

differences  (e.g., Chase and Simon 1973). This first study examines some 
basic differences in how components in devices are represented and chunked 
together. The second study uses Latent Semantic Analysis (Deerwester et al. 
1990) as a methodological tool to aid in exploring and analyzing the content 
of students’ representations. This study seeks to determine whether the 
seniors think about and represent devices in a more abstract functional 
manner than do freshmen. 

2. Expertise in Design 

There has been some relevant work on the differences between experts and 
novices in engineering design. For instance Atman, Chimka, Bursic, and 
Nachtmann (1999) have looked at differences in the design processes of 
freshmen and senior students by analyzing concurrent verbal protocols. They 
found that seniors have a better representation of what a good design process 
entails and can transition between steps in the design process more easily 
than can freshmen. Also, seniors consider more design alternatives than do 
freshmen which is probably one reason that seniors end up producing better 
quality designs in their study. Other researchers have examined the 
differences between the design processes of students as compared to 
professionals. For instance, it was found that in an artificial design task that 
groups of professionals exhibit more metacognitive and strategic behaviors 
during design (Smith and Leong 1998). Student groups rarely exhibited these 
behaviors, and they tended to iteratively refine their original design concept 
as opposed to exploring multiple alternatives as the professionals often did. 

Another series of studies investigated engineering design processes using 
concurrent verbal protocols (Ball et al. 1997, Ball et al. 1994, Ball and 
Ormerod 1995). These studies found that novices use a depth-first design 
process while experts use more of a breadth-first approach. Both groups of 
designers decomposed the problem into modules, but experts tended to 
develop each module to a certain level of detail before moving to the next 
level of detail. Novices were more likely to do detailed design on one 
module before moving on to the next. It is proposed that the depth-first 
structure is advantageous for novices since it limits the amount of goal 
information they must store in memory. Even when experts deviated from 
their breadth-first structure there seemed to be principled reasons for doing 
so. For example, an expert may quickly follow one potential solution in 
depth to assess its feasibility before proceeding to other parts of the design. 

There has also been some work in the domain of architectural design. For 
instance, Suwa and Tversky (1997) collected a set of retrospective protocols 
from students and a couple of professional architects. They found that the 
experts tended to follow certain trains of thought in more depth than the 
novices. Also the experts were better at reading certain types of functional 
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information from their sketches than were novices. This same set of 
protocols has been the basis for other work as well (Kavakli and Gero 2001, 
Kavakli and Gero 2002, Suwa et al. 1998), but these have all been case 
studies in which either a single expert or one expert and one student have 
been examined so it is impossible to determine if there are any statistically 
reliable differences in these studies. These studies have all used retrospective 
protocols because it was believed that concurrent verbalization would bias 
the design and sketching behavior of participants. The retrospective 
protocols done in these studies used a video of the design session to cue 
verbalization. This procedure is likely to bias the results since the only recall 
cues to the designer are from sketching behavior. Other converging methods 
should be used to confirm these results to make sure the results generalize to 
other groups and to insure results were not overly biased by the retrospective 
method used. This is just one set of examples of work in the domain of 
architectural design that may relate to expertise in engineering design. Since 
it is unlikely that specific results in this domain will transfer directly to 
engineering design, there is a need to analyze the content and structure of the 
two domains in order to determine which results are relevant to expertise in 
engineering design. As discussed above, the cognitive learning mechanisms 
that enable expertise acquisition are the only thing guaranteed to hold across 
domains, and most studies of expertise in design do not study cognition at 
this level. 

Overall, the work on engineering design and related areas tends to focus 
more on differences in the design processes of experts and novices than on 
representation and other cognitive issues. These studies have some things to 
say about the cognitive processes going on in design, but there is not much at 
all about the internal representations that engineers use while solving a 
design problem. Goel (1995) presents an analysis of design problem spaces 
and the results of a study which indicate that certain types of symbol systems 
are necessary to support design activity. His work is concerned with some 
general necessary properties of a representational system. However, the 
subjects in this study were all experts so it is unclear how these results map 
onto novices. As stated above, it is necessary to understand how devices and 
other domain knowledge are represented in memory and how these 
representations change with expertise. The studies presented below are a first 
step in understanding these important issues. 

3. Experiment 1: Chunking of Components 

This study examines how the participants chunk components into larger 
meaningful units. Just as experts are known to chunk elements into larger 
units of knowledge in other domains such as electronics (Egan and Schwartz 
1979), it should be the case that the more experienced students have some 
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way of organizing knowledge about components in a device. One hypothesis 
is that components will be chunked into larger meaningful units which 
perform a certain function in the device. Such functional units or chunks 
could occur across multiple devices in which the chunk performs the same 
function. One example would be a rack and pinion as this set of components 
is one common method to convert between rotation and translation and could 
be expected to occur in a variety of devices. However, engineers will also be 
able to reason about the functionality of a particular device and break it into 
functional units regardless of whether they are commonly occurring or not. 

In order to investigate these issues, a recall paradigm was utilized that 
extends an approach used by others to study chunking differences in 
expert/novice behavior (Chase and Simon 1973, Reitman 1976). The basic 
method is to present a stimulus, such as a chess board in a mid-game 
position, for a brief period of time. The participant is then asked to recall the 
presented stimulus. In the original methodology both recall and perception 
tasks were used and chunks were identified based on inter-response times 
(IRTs) that were common to both tasks. However, later work examining 
chunks in Go (Reitman 1976) found that a common IRT could not be found 
for both tasks due to the fact that the chunks in Go have an overlapping 
structure. This was not a problem in the chess research since the chunks in 
chess have more of a hierarchical relationship. In our experiment, only a 
recall task was used, and in order to avoid problems with finding an 
appropriate IRT boundary, analysis of IRTs was only one of many measures 
used to look at representation differences. In particular, we looked at percent 
recall after one exposure, errors, patterns of recall, and alternate methods of 
identifying chunks in addition to IRTs. 

3.1. METHOD 

3.1.1. Participants 
Fifteen seniors majoring in mechanical engineering volunteered for the 
study. These students were recruited from a required senior engineering 
design course at Carnegie Mellon. Fifteen freshmen engineering students 
also participated in the study as partial fulfillment of a course requirement. 
All freshmen were enrolled in the engineering college at Carnegie Mellon, 
but students in this college do not declare a particular engineering major 
until after their freshman year. 

3.1.2. Stimuli 
Three electromechanical devices were represented in schematic diagrams 
which indicated how components fit together in each device. The schematics 
were represented in an idealized fashion where only the types of components 
and the connections between these components were displayed. For 
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example, all gears were represented by the same icon which includes no 
information about different sizes, shapes, or types of gears. Connections 
between components were represented by lines connecting components. An 
example design schematic is shown in Figure 1. The number of components 
in each device was 16, 13, and 14 for the drill, pressure gauge, and weighing 
machine respectively. The number of connections in each device is 9, 11, 
and 12 for the drill, pressure gauge, and weighing machine respectively. The 
weighing machine is similar in purpose to a bathroom scale. The number of 
unique components differs since some types of components were used more 
than once in a design. The drill had only 9 unique components, while the 
pressure gauge and weighing machine had 11 and 12 unique components 
respectively. Each diagram also had a label at the top indicating the type of 
device depicted as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of diagrams seen by participants 

3.1.3. Procedure 
Participants were asked to recall three design schematics using a graphical 
interface after a brief study period. Participants received instruction and were 
allowed to become familiar with the interface and the type of representation 
used in the diagrams. The user interface is depicted in Figure 2, and it 
consists of a set of components that can be dragged over to a drawing space 
where they can be moved, connected, disconnected, or removed. Participants 
then received a practice trial followed by three recall trials. During each trial, 
the initial schematic was displayed for 40 seconds, and then the display of 
the user interface replaced the schematic. Participants then had 3 minutes in 
which to recall as much of the schematic as possible. The design schematic 
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was presented again for 40 seconds if the participants had not recalled the 
design completely. These periods of display and recall alternated until the 
participant recalled the device perfectly. The presentation order of the three 
design schematics was counterbalanced. The computer generated a time 
stamped entry in a log file for every action the participant took. The log was 
detailed enough so that a participant’s actions could later be replayed for 
purposes of analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Screenshot of user interface 

3.2. RESULTS 

The percentage of components and connections between components 
recalled correctly during the first recall session of a trial was analyzed. 
Recall of components was almost perfect for all devices for both freshmen 
(M = 92.4%, SD = 9.23%) and seniors (M = 93.6%, SD = 10.2%), and 
experience level had no significant effect. Device type does have an effect on 
this measure, F(2,56) = 3.63, p = .03, and further contrasts showed that the 
drill components (M = 95.8%, SD = 7.58%) were recalled significantly 
better than both the weighing machine (M = 91.2%, SD = 10.0%), F(1,28) = 
7.81, p = .01, and pressure gauge components (M = 92.3%, SD = 10.3%), 
F(1,28) = 5.05, p = .03. Recall of connections was lower overall than for 
components. There was no significant difference between freshmen (M = 
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77.8%, SD = 20.6%) and seniors (M = 82.8%, SD = 23.6%) on recall of 
connections, but again there was a significant effect of device type, F(2,56) = 
5.96, p = .005. The drill’s connections (M = 89.3%, SD = 14.6%) were 
recalled better than both the weighing machine (M = 73.8%, SD = 25.9%), 
F(1,28) = 11.4, p = .002, and pressure gauge (M = 78.9%, SD = 21.5%), 
F(1,28) = 6.83, p = .014. These results indicate that some devices were 
harder to recall than others. The most difficult design to recall seems to be 
the weighing machine followed by the pressure gauge, and the easiest to 
recall is the drill. The drill has only 9 unique components with a number of 
repeating patterns, but the other two devices have an increasing number of 
unique components. It makes sense that recall difficulty would increase with 
the more components and locations that have to be remembered. 

A number of error types were defined and analyzed. They include adding 
a component that is not part of the design, removing a component that is 
needed, connecting two components that are not connected in the original 
design, and disconnecting two components that should be connected. 
Freshmen made more errors overall than seniors, F(1,28) = 42.1, p < .001. 
Device type did not have an effect on overall errors, and there was no 
interaction between device type and experience. The component removal and 
disconnect errors did not occur frequently enough to be analyzed separately, 
but analyses were done on the add and connect errors. There were no effects 
of device type or experience on the add errors, but there was an effect of 
experience on the number of connection errors, F(1,28) = 43.3, p < .001. 
Connection errors can be further divided into possible connections and 
impossible connections depending on whether the two components could 
actually be connected in the real world. Connection errors are displayed in 
Figure 3, where it can be seen that freshmen do make more connection errors 
than seniors. There was no significant interaction between device type and 
experience with respect to connection errors. 

Patterns of reconstruction were also analyzed, and one meaningful pattern 
was identified. A number of students started at the input of the device and 
reconstructed the device based on the flow of energy through the device. For 
example, in the drill in Figure 1, students following this pattern began with 
the power source and then proceeded to add the switch, motor, gear sets, and 
drill chuck in that order. 14 out of the 15 seniors used this pattern at least 
once, while only 8 of the 15 freshmen did. In addition, two of the three 
devices were presented so that their input was on the left and power moved 
through the device from left to right, but the drill was presented so that its 
input was on the right side of the screen. For the drill, 6 seniors and only 2 
freshmen went from input to output. One of these seniors and one of these 
freshmen actually saw the drill as the first design, but in the other cases the 
participant had already reconstructed another device from left to right (input 
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to output) and reversed for the drill. This provides some evidence that 
seniors prefer to reconstruct the device based on the flow of energy through 
the components of the device, and there was some preference for moving 
from input to output even when the direction of input to output was reversed 
on the display. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Average number of connection errors 

The data can also be divided into chunks, but these divisions were not 
based solely on IRTs. First, an IRT criterion was set to distinguish between 
chunk transitions from within chunk transitions. A cutoff of 4 seconds was 
used. This value may be conservative as other studies have used boundaries 
of around 2 seconds. However, without an additional task such as the 
perception task used by Chase & Simon (1973) it is difficult to come up with 
a definite boundary. For example, in the perception task participants had to 
reconstruct a mid-game chess board, but they were able to glance back and 
forth from the board to be reconstructed and the board on which they were 
reconstructing the game position. It was assumed that participants encoded 
one chunk during each glance. Between chunk IRTs can then be 
distinguished from within chunk IRTs by looking at the difference in IRTs 
for when a participant recalled two pieces in succession without a glance at 
the original board and when they recalled two pieces separated by a glance at 
the original board. 

The 4 second cutoff only includes 20% of the chunk transitions in our 
study. So the vast majority of transitions are still classified as within chunk 
transitions. However, the structure of the task also defined additional chunk 
boundaries. In the process of reconstructing a device, many participants 
would add a set of components and then proceed to connect those 
components before adding another set of components. This seems to provide 
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a natural boundary whereby a participant adds a chunk, connects the 
components in it, and then adds another chunk. Using these two types of 
chunk boundaries, the data was segmented into individual chunks. 
Participants also drew chunk boundaries as mentioned before so their drawn 
chunks could be compared to the chunks generated from the recall data. 

As a first step, the number of times a specific set of components were 
chunked together by participants was calculated. This allowed assessment of 
the chunks that individuals agreed on to some extent. The chunks identified 
by analysis of the recall data were similar to the chunks identified by the 
participants. This type of group level analysis indicates that both freshmen 
and seniors agree on the same types of chunks with the seniors being 
somewhat more consistent in the chunks they identify. Freshmen and seniors 
both produce chunks having between 2-3 components per chunk. While 
there seems to be agreement between freshmen and seniors when it comes to 
what should be chunked, the chunks identified do explain the error results 
mentioned earlier as will be explained below. 

As mentioned before one of the most common types of errors was the 
connection errors, and this was the only type of error where the frequency of 
the error differed for freshmen and seniors. For both freshmen and seniors, 
95% of their errors occurred when connecting two components that were not 
in the same chunk. When making a connection error, both groups are likely 
to make the error when connecting two different chunks, but freshmen make 
2-3 times more of these errors than seniors depending on the particular 
problem. The difference in the frequency of connection errors then reflects 
the ability of seniors but not freshmen to remember how chunks of 
components were connected together. 

3.3. DISCUSSION 

In general it appears that seniors differ from freshmen on their understanding 
and ability to remember information about the connections and interactions 
between components. Seniors make fewer errors than freshmen, and the 
analyses indicate that this is mostly due to increased connection errors for 
freshmen. There is also some indication that freshmen may make more 
connection errors as problem difficulty increases (Figure 3), but this 
interaction failed to reach significance probably due to lack of statistical 
power. Seniors tend to rely more on recall methods that utilize the natural 
flow of power from one component to the next than do freshmen. From the 
connection error and chunking results, it is apparent that freshmen have more 
difficulty remembering how chunks of components connect together. 
Therefore, one of the main differences between the groups appears to be in 
their ability to remember how chunks of components connect together to 
form the overall device. This implies that freshmen are able to chunk 
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components but have more difficulty connecting these functional units 
together to produce overall device behavior. The representation of chunks of 
components is weaker in freshmen than in seniors. While seniors are able to 
remember the chunks and how they interact to produce overall device 
behavior, freshmen are not as able to represent such interactions. 

4. Experiment II: Functional Reasoning 

In order to determine if a kind of abstract functional understanding was more 
prevalent in the mental representations of seniors than freshman a second 
study was run. Since it is apparent from the first study that freshmen lack a 
strong representation of how components interact, this should mean that 
freshmen are not as able to reason about devices in an abstract functional 
manner since the abstract functional level would entail reasoning about the 
functions of chunks of components and how those functions interact in 
producing device behavior. 

Other work has demonstrated that people high in self-rated mechanical 
ability appear to reason better about the functioning of a device than do 
people low in self-rated mechanical ability (Heiser and Tversky 2002). In the 
current study it is assumed that the participants are all high in mechanical 
ability since they are all majoring in or intending to major in mechanical 
engineering. Based on these results and those of Experiment I it is 
hypothesized that more experienced participants will demonstrate better 
utilization of functional knowledge than less experienced participants. In 
order to investigate these issues, a new method of data analysis will be 
introduced. In the Heiser and Tversky (2002) work, each proposition that 
was written by a participant was coded as either structural or functional. This 
allowed them to show that high mechanical ability participants used more 
functional propositions. In this study, latent semantic analysis (LSA) will be 
used to test for higher functional content in written text. This method does 
not require someone to decide whether each proposition contains functional 
information or not. The data could also be analyzed using the proposition 
coding system as well just to show that the two methods are consistent, and 
this is part of planned future work. 

In order to investigate these issues, students were asked to write brief 
descriptions of devices that were presented in diagrams. One assumption 
underlying this study is that the information students choose to include in a 
brief description is what they find important about the device, and that this 
importance is related to their mental representation of the device. In addition 
to the issue of functional information discussed above, another hypothesis 
that will be investigated is that seniors may be more mutually consistent in 
their descriptions than are freshmen. The reasoning behind this idea is that 



 KNOWLEDGE REPRESENTATION IN ENGINEERING DESIGN 13 

 

seniors have gone through years of formal education which may lead them 
all to think about the devices in a similar manner. 

4.1. LATENT SEMANTIC ANALYSIS 

The participants’ descriptions were analyzed using Latent Semantic Analysis 
(LSA). LSA was originally developed as an information retrieval technique 
designed to overcome synonymy problems (Deerwester et al. 1990). It has 
also been used for a number of other purposes including as a model of text 
comprehension (Landauer and Dumais 1997). More recently it has also been 
used to develop similarity metrics to be utilized in the analysis of data from 
complex problem solving trials (Quesada et al. 2002). LSA begins with a 
term-by-document frequency matrix, and produces a reduced dimensionality 
space in which each document or term can be seen as a point or vector in that 
space. Similarities can then be computed between any two terms or 
documents by computing the cosine between the appropriate vectors. These 
properties make LSA an excellent tool for exploring similarities and 
differences between documents written by participants, thus shedding light 
on the content of their representations. 

One set of researchers has already utilized LSA to try to identify shared 
design understanding among a set of designers (Hill et al. 2001). That study 
was concerned with building information management tools that retrieved 
relevant information based on a certain shared understanding of the design 
problem. This shared understanding was determined by using LSA to 
analyze documentation from design projects. This use of LSA allows for a 
particular- representation of the desired design project to be created, but 
these researchers were not concerned with identifying properties of this 
representation. 

4.2. METHOD 

4.2.1. Participants 
In this study, there were 44 volunteers from a senior mechanical engineering 
design class. There were also 24 freshmen volunteers from a freshman 
mechanical engineering class, and the study was run during their first 
mechanical engineering course. 

4.2.2. Stimuli 
Three electromechanical device diagrams were used in this study. These 
diagrams were taken from patents for a power screwdriver (Figure 4), a 
cordless weed trimmer, and a drum brake system. The diagrams were mostly 
cross-sections of the devices and had lines labeling key components. The 
diagrams were used exactly as they appeared in the patent except that some 
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labels were removed in order to ensure a similar number of labeled 
components for each diagram. Each diagram had 9-11 labeled components 
and had the name of the device printed in large bold letters at the top. 
 
 
 
 
 
 
 
 

Figure 4. Example diagram seen by participants 

4.2.3. Procedure 
Participants were told that they would see diagrams of three 
electromechanical devices that had been taken from patents. They were told 
that their task was to write a description of each device but were not told 
what kind of information to include in their descriptions. If they asked what 
to include, they were told to include whatever they thought important as long 
as it pertained to the device shown. Participants viewed the device on a 
computer screen, and were told that they could click a button beneath the 
diagram that would remove the diagram and take them to a text area where 
they could type their description. There was also a button below the text area 
to take them back to the diagram, and they could alternate back and forth 
between description and diagram as often as they wanted. Each time they 
switched between the two views an entry was added to a log file and the 
current state of their description was saved to a time stamped file. 
Participants were instructed to spend about five minutes describing each 
device. They were not forced to spend exactly five minutes on a device, but 
they had to pace themselves to finish all three descriptions in 18 minutes. 
There was a clock displayed in the lower right corner of the screen to help 
them pace themselves. 

The participants were then asked to rate their prior knowledge of each 
device (1=poor, 7=good). The freshmen participants then completed an 
additional set of eight true/false questions for each device before they gave 
their ratings. The questions consisted of a mix of questions emphasizing 
either the structure/composition of the device or the function of components 
within the device. They were not allowed to view any of the diagrams during 
these questions. The freshmen all participated during the second half of their 
first semester. The seniors were divided into two groups of 20. The first 
group completed the study in the first three weeks of the semester, and the 
second group participated after half of the semester had passed. This timing 
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was used because it allowed us to test the hypothesized that the senior design 
course may be instrumental in changing the way students thought about 
designs since it specifically included a lecture on function structures about 
four weeks into the course. 

4.3. RESULTS 

Four seniors and two freshmen were excluded from all analyses since they 
failed to finish in the allotted time. This included two seniors from the early 
group and two from the late group. 

Freshmen rated themselves as having more knowledge about the weed 
trimmer than the other two devices (χ 2 = 6.87, p = .03), but there were no 
significant differences between devices in the seniors’ ratings. There were 
also no significant differences between the ratings of freshmen and seniors 
for a particular device. All groups were therefore similar in their prior 
knowledge of the devices. The true/false questions were included to assess 
functional and structural knowledge of a device. All freshmen performed 
well on these questions averaging 6.8, 7.2, and 7.2 questions out of 8 correct 
on the brake system, screwdriver, and weed trimmer respectively. Any 
differences observed in functional knowledge were therefore not due to the 
freshmen being unable to access this knowledge. 

One parameter that can be adjusted in LSA is the number of dimensions 
retained in the multidimensional space. Based on judgments from the 
number of dimensions used in previously published work with LSA, it was 
estimated that a good number of dimensions would be somewhere between 
50 and 300. Most other LSA work has been done with much larger text 
corpora and optimal dimensionality was around 300 dimensions. Since our 
corpus of device descriptions is much smaller, a smaller number of 
dimensions are needed to capture most of the important information in the 
semantic space. The first 100 dimensions were used for all of the LSA 
results reported here. 

The hypothesis that seniors are more consistent as a group than are 
freshmen was tested by computing a similarity measure between each 
participant’s description of a device and the average vector for that device. 
The average vector was found by averaging the individual vectors for 
documents describing a particular device. A separate average was produced 
for freshmen and seniors for each device. For example, all freshmen drum 
brake device vectors were averaged to produce the average freshman brake 
description. Then for each device the average freshman vector was 
subtracted from the average senior vector. This produces a vector for each 
device that points from the average freshman description to the average 
senior description. This vector was then treated as a line in the 
multidimensional space with its origin at the average freshman description. 
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All descriptions for a particular device were then orthogonally projected to a 
location on this line. Their location provides a way of examining freshmen 
and senior differences. 

Due to the way the line is constructed and the way documents are 
projected to points on this line, the average senior description for a device 
will be a certain distance away from the average freshman description. The 
first test is whether there is a significant difference between where the senior 
and freshmen descriptions fall on this line, and they are significantly 
different, F(1,54) = 121, p < .001. The earlier hypothesis that seniors will be 
more similar to each other as a group than freshmen was then tested by 
looking at how far freshmen and seniors are from the average freshman and 
senior descriptions. For instance, seniors should on average be closer to the 
average senior description than freshmen are to the average freshman 
description. This difference is also significant with seniors deviating less 
from their average description than freshmen, F(1,54) = 275, p < .001. This 
means that seniors are more consistent with each other than freshmen on the 
information they include in descriptions of a particular device. 

The search engine qualities of LSA were utilized in order to examine the 
hypothesis that seniors included more information about the functioning of a 
device in their descriptions. The documents in the multidimensional 
semantic space can be compared to a query vector and their similarity to this 
vector can be assessed using the cosine measure. In order to formulate a 
query that represents function information, a set of words that are associated 
with describing the functioning of a device were combined into a single 
query. Stone and Wood (2000) have developed a vocabulary to explain the 
internal chain of functions that produces a device’s behavior. They have 
shown that this vocabulary can be used to represent a variety of different 
devices. The function words they use and the associated list of synonyms 
that they define for those words totals 73 words. Three of these words were 
judged to deal more with the structure of devices, and they were excluded 
from the query. These words were “connect”, “locate”, and “join”. The 
remaining 70 words were combined into a query that was submitted to the 
LSA space. 

This process functions like a search engine, and the system ranks 
documents according to their similarity to this query consisting of function 
words. Both experience level, F(2,61) = 3.7, p = .03, and device type, 
F(2,122) = 12.7, p < .001, have significant effects on a document’s similarity 
to this query, but these two factors did not interact. Further contrasts reveal 
that the freshmen have significantly lower cosines (i.e., are less similar to the 
query) than the later group of seniors, F(1,61) = 5.05, p = .02. Also the drum 
brake system descriptions had higher cosines than both the screwdriver, 
F(1,61) = 18.4, p < .001, and the weed trimmer, F(1,61) = 16.7, p < .001. 
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Document relatedness rankings retrieved from a query are often easier to 
interpret than the cosine values. Rankings are determined by sorting the 
cosines between a document and the query in descending order. The 
document with the highest cosine is ranked 1 and so on. The average rank 
(out of 192) for freshmen descriptions was 110.2 (SD = 55.4), while the 
seniors on average ranked 94.6 (SD = 55.5) and 82.0 (SD = 52.7) for the 
earlier and later groups respectively. These results indicate that seniors 
included more content that is similar in meaning to the function words in the 
query. Furthermore, the earlier group of seniors is ranked between the 
freshmen and the later group of seniors indicating an increase in functional 
content with experience. 

4.4. Discussion 

The results from this study agree with and support those of the first study in 
that seniors are shown to incorporate more function information into their 
representations. Seniors do differ from freshmen on their similarity to the 
prototypical or average descriptions, and they differ on the amount of 
functional content they include in their descriptions. This means that seniors 
have all adopted a similar representation of the device, and that this 
representation includes more functional content than do the representations 
that freshmen use. The fact that seniors include more function content in 
their description adds further support to the idea that one of the main 
differences between the two groups of students is the ability to represent and 
process the functionality of chunks of components in a device. 

5. General Discussion 

The results from both studies support the idea that more experienced 
engineering students represent and reason about the functionality of a device 
and its components better than less experienced students due to differences 
in the representations used by the two groups. This finding seems to be the 
main difference in design knowledge representation at these levels of 
experience. This is not to say that freshmen can not or do not represent 
functional content, but instead that the memory structures that support this 
type of reasoning are not as well developed in freshmen. This level of 
representation provides the seniors with additional constraints when recalling 
the devices presented in the first study. 

Senior engineering students may have a more detailed network of design 
knowledge which integrates content which the freshmen hold in separate 
representations if at all. For instance, both a freshman and senior may have 
similar representations of the structure of a gear and how the gear interfaces 
with other components. However, the senior may also have a representation 
of the abstract function of a gear and a set of contexts in which a gear may 
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perform well. This idea of context is important because some functions can 
be performed by a group of two or more components, but not by any one of 
the components by itself. For instance, transforming rotational motion into 
translational can be performed by a rack and gear together but not by either 
of them separately. It may be that building up a set of such associations 
between sets of components and functionality is one of the main changes that 
take place as an engineer gains more experience. This type of learning and 
representation change seems similar to the learning of chunks in chess and 
other domains (Chase and Simon 1973). 

One explanation for the findings in this paper is that the device is 
represented at multiple levels. The most abstract level is the overall function 
of the device, and the most detailed level would be the components which 
make up the device. In between these two levels are one or more levels in 
which the function chunks of components are represented. There may be 
multiple levels of this type of chunking in which the chunks at one level are 
grouped into sets at the next level. At any particular level, a chunk of 
components performs a subfunction which contributes to the overall 
functioning of a device. A similar model called conceptual chunking has 
been proposed to deal with the expertise of electronics technicians (Egan and 
Schwartz 1979). Using this type of model, it is proposed that the freshman 
differ from seniors in their ability to represent the middle levels where 
chunks of components perform some function. The freshmen seem to 
understand what types of components should go together to perform a 
sensible function, but they have problems linking these functions together to 
achieve the overall device function. In this view, seniors have a more 
integrative and less fragmented representation of the relation of the device 
and the components of which it is composed. This framework makes it easier 
for the seniors to recall devices since they have more constraints from which 
to reason. For instance seniors can reason about which components go 
together to perform certain functions, and they can also reason about which 
functions may be necessary for overall device behavior. Freshmen on the 
other hand may not be as able to reason about which functions are necessary 
for the overall behavior of the device, and so they have more difficulty 
connecting together chunks of the device and are less likely to talk about this 
level of function when describing a device. 

This type of conceptual chunking relationship also relates to earlier work 
on the observed structure of the engineering design process in novices and 
experts. It has been found that experts adopt a more breadth-first design 
process, while novices use a depth-first process (Ball et al. 1997, Ball et al. 
1994, Ball and Ormerod 1995). The designers in these studies all 
decomposed their design into more manageable modules. The observed 
structure of the design process could relate to how well developed the mental 
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representations of the device are for experts and novices. Depth-first design 
processes require maintaining less intermediate information about other parts 
of a device, while a breadth-first approach requires thinking about how parts 
of a device interact at a number of different levels of specificity. It may 
therefore be easier for a novice to use a depth-first approach toward design. 
In this way, the work on representation presented here provides some 
insights into why design processes differ for novices and experts. 

LSA is a potentially powerful tool for investigating the structure of 
knowledge representations. A number of interesting questions about 
representation can be answered by using this automatic technique to 
represent a set of documents in a multidimensional space. One of the main 
problems in using LSA as an exploratory tool is trying to find the correct 
number of dimensions. However, varying the dimensionality of the space 
could also vary the amount of detail incorporated in the representations 
being examined. Seen in this light, having a variable number of dimensions 
could be a positive aspect of LSA as an analysis tool since the amount of 
representational detail being examined could be varied with one parameter. 

One limitation of this work is that it only deals with engineering students. 
There are plans to expand this work to professional engineers, and it should 
be interesting to see how even greater amounts of design experience affect a 
person’s representation of design knowledge. However, this work does 
capture some of the differences in the beginning stages of the acquisition of 
expertise. Also, even though differences associated with design experience 
have been identified, there is currently no mechanism that explains how 
these changes come about. Generating such an explanation is a necessary 
step in coming up with a cognitive model of the engineering design process. 
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