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Abstract

As engineers gain experience and become experts in their domain, the structure and content of their
knowledge changes. Two studies are presented that examine differences in knowledge representation
among freshman and senior engineering students. The first study examines recall of mechanical devices
and chunking of components, and the second examines whether seniors represent devices in a more ab-
stract functional manner than do freshmen. The most prominent differences between these 2 groups in-
volve their representation of the functioning of groups of electromechanical components and how these
groups of components interact to produce device behavior. Seniors are better able to construct coherent
representations of devices by focusing on the function of sets of components in the device. The findings
from these studies highlight some ways in which the structure and content of mental representations of
design knowledge differ during the early stages of expertise acquisition.
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1. Introduction

The knowledge structures and processes that are created during the acquisition of expertise
are determined by both general cognitive constraints and the content of the domain in which
expertise is being acquired. This means that the content and to some extent the structure of the
knowledge representations are determined by the particular domain of expertise. The study of
a particular domain of expertise provides information about the specific mental representations
and cognitive processes employed by experts in that domain, and this information is poten-
tially beneficial in the design of cognitive aids that can assist experts and in improving the edu-
cation of future experts in that domain. In addition, by examining the similarities and differ-
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ences of expertise in one domain with expertise in other domains, a general understanding of
the processes underlying expertise acquisition can be attained.

A number of domains of expertise have been studied, and there are some general findings
about how the structure of domain knowledge changes with experience in these tasks. A hierar-
chical database of commonly occurring configurations or patterns is present in a number of do-
mains, including games such as chess and Go as well as the interpretation of electronics dia-
grams (Chase & Simon, 1973; Egan & Schwartz, 1979; Reitman, 1976). This type of
knowledge structure aids the expert in classifying this situation and identifying good moves. In
particular, Egan and Schwartz proposed an explanation for their findings that they called con-
ceptual chunking. This explanation says that the technicians were able to identify the concep-
tual category of a drawing by the layout of the wiring diagram (e.g., inverter, power supply,
etc.). The conceptual category is organized in memory so that it is linked to a set of commonly
occurring functional units, or chunks, that would normally appear in such a device, and then
each functional unit is linked to a number of components that commonly instantiate that unit.

Another general property of expertise is that it affects not only what is stored in memory but
also how things in the world are perceived and categorized. Experts have highly organized mem-
ory structures such as schemas, templates, and retrieval structures (Gobet, 1998; Richman,
Staszewski, & Simon, 1995). As information about a new problem is perceived, this information
automatically activates relevant domain knowledge and processes. This allows experts to easily
categorize information and recognize solution schemas in their domain. For example, physics
experts can recognize and solve common problems in a more efficient manner than novices
through activation of appropriate strategies and schemas (Larkin, McDermott, Simon, & Simon,
1980). In fact, in expertise it is common for the associated knowledge structures and processes to
besuchanintegralpartof thecognitivesystemthat theyaffect thewaytheexpertperceives theen-
vironment. Chase and Simon (1973) argued that chunking can take place at the perceptual level,
and elsewhere it has been shown that although domain knowledge does not directly transfer to
otherdomains it canstill influence thewaypeople reasonaboutgeneral situationsoutsideof their
domain of expertise (Nisbett, Fong, Lehman, & Cheng, 1987).

Other general findings in the expertise literature are that experts tend to work forward from
the givens in the problem rather than backward from the desired solution, and experts tend to
classify items and problems in their domain of expertise according to a deeper conceptual
structure rather than surface similarities (Chi, Feltovich, & Glaser, 1981; Hmelo-Silver &
Pfeffer, 2004; Larkin et al., 1980; McKeithen, Reitman, Rueter, & Hirtle, 1981). For instance,
experts in solving physics problems classify problems based on the principles used to solve the
problem instead of similarities in the wording or diagrams of the problem (Chi et al., 1981).
Computer programming experts are more likely to represent the functional similarities of
keywords in a programming language rather than grouping words into phrases that are mean-
ingful in English (McKeithen et al., 1981). These cases all involve possessing a representation
of domain material that is adapted to key concepts that affect performance in a domain.

These properties of expertise are likely to hold in the complex domain of engineering design
as well. Although it is worthwhile to examine the properties of expertise in this area, the studies
reported here also examine the early acquisition of expertise, which has only been studied in a
few domains. For instance, Hmelo (1998) provided an analysis of the acquisition of expertise
in medicine. Her findings are consistent with what has been found in studies of medical exper-
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tise that compare professionals and students, but they also highlight some things that are
unique to the early stages of expertise, such as the lack or incompleteness of advanced knowl-
edge structures. For example, the medical students studied by Hmelo seemed to have a
well-developed causal network of scientific concepts but lacked more advanced structures
characteristic of experts, such as illness scripts. Understanding these knowledge structures and
how they develop during the acquisition of expertise provides insights into the difficulties en-
countered by students due to their incomplete knowledge structures. This understanding may
also highlight methods that can be used to encourage the development of more advanced and
coherent knowledge structures. The studies presented in this article focus on the representation
differences that exist among engineering students in the early stages of expertise acquisition.

Previous work examining differences in early expertise among engineering design students
has focused mainly on how the design process changes with experience. For instance Atman,
Chimka, Bursic, and Nachtmann (1999) looked at differences in the design processes by ana-
lyzing concurrent verbal protocols of freshmen and senior students solving a design problem.
They found that seniors have a better representation of what stages a good design process in-
cludes and can transition between steps in the design process more easily than freshmen. Se-
niors also consider more design alternatives than do freshmen, which is probably one reason
that seniors end up producing better quality designs in their study. Other researchers have ex-
amined differences between the design processes of students and professionals. For instance, it
was found that in an artificial design task that groups of professionals exhibit more meta-
cognitive and strategic behaviors during design (Smith & Leong, 1998). Student groups rarely
exhibited these behaviors, and they tended to iteratively refine their original design concept as
opposed to exploring multiple alternatives as the professionals often did.

Another series of studies investigated engineering design processes in students and profes-
sionals using concurrent verbal protocols (Ball, Evans, & Dennis, 1994; Ball, Evans, Dennis,
& Ormerod, 1997; Ball & Ormerod, 1995). These studies found that novices use a depth-first
design process, whereas experts use more of a breadth-first approach. This means that al-
though both groups of designers decomposed the problem into modules, experts tended to de-
velop each module to a certain level of detail before moving to the next level of detail, and nov-
ices were more likely to do detailed design on one module before moving on to the next. The
authors proposed that this depth-first structure is advantageous for novices because it limits the
number of unfulfilled goals they must store in memory. This is because it is not necessary to
maintain detailed unfulfilled goals for partially complete modules. The depth-first design pro-
cess they discuss is simpler because a module can be in only one of three states: completed,
never been worked on, or currently being designed.

These studies have some things to say about the cognitive processes going on in design, but
there is not much at all about the internal representations that engineers use while solving a de-
sign problem. Goel (1995) did present an analysis of design problem spaces and the results of a
study that indicate that certain types of symbol systems are necessary to support design activ-
ity. In particular a system that supports design requires a level of ambiguity in its representa-
tion of an incomplete design. This work differs from ours in that it is concerned with some gen-
eral properties of a representational system and not the specifics of how design information is
organized in memory. Another difference is that the participants in his study were all experts,
so it is unclear how these results map onto novices.
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Understanding the representation changes that occur as engineering students progress to-
ward becoming professionals is essential in achieving an understanding of the cognitive pro-
cesses underlying performance in engineering design. It is well known that the representations
that experts and novices employ while solving problems drastically alter the complexity of the
problem space (Koedinger & Anderson, 1990; Newell & Simon, 1972). These changes are
probably occurring during the early stages of expertise acquisition in a domain, which makes it
important to study students at different points during the transition to expertise. The work pre-
sented here represents the beginning of a detailed examination of the representations and pro-
cesses that allow engineering students to acquire the skills necessary to perform the complex
tasks required by their profession.

One of the key concepts in engineering design is function. A study of a similarly technical
field, electronics, found that the function of a device and subsystems within that device af-
fected how it was represented by expert electronics technicians (Egan & Schwartz, 1979).
Much of the engineering design research literature has assumed the importance of function in
design problem solving (for a review, see Wood & Greer, 2001). This includes studies of hu-
man engineers as well as computational design systems. For instance, it has been shown that
automated design systems benefit from representing the functions of sets of components (e.g.,
Moss, Cagan, & Kotovsky, 2004). These properties of the literature indicate that engineers per-
ceive the importance of function within their domain. An additional motivation for the studies
presented here is to investigate exactly what role function plays in the early stages of expertise.
In particular it will be argued that the representation of function plays a key role in forming co-
herent representations of electromechanical devices.

Throughout the article a distinction is made between interactions of components and func-
tions of components when examining what students write about devices. We differentiate be-
tween these two categories by assessing whether the statement in question includes only causal
information about the way two components interact or whether more detailed information is
included in the statement. There is a key difference in understanding between a student who
states that “This gear turns that gear” and a student who might say, “The smaller gear turns the
larger gear so that the larger gear turns slower than the smaller one” or one who might say,
“The pair of gears serves to decrease rotational speed and increase torque.” We would call the
latter two statements functional statements, whereas the first would be considered a statement
about the interaction of two components. The functional statement need not contain technical
terms as the second example statement shows, but it must contain some information about the
function of components beyond a simple indication of causal interaction. This additional infor-
mation usually indicated the purpose of a component or set of components in the system.

The studies presented here look at freshmen and senior engineering students to see what
kind of representation changes accompany the early transition to expertise. The kinds of differ-
ences found between freshmen and seniors may generalize to professional engineers on further
investigation, or alternatively the transition from student to professional may involve other
qualitative changes in mental representation. Even if these differences do not generalize to pro-
fessionals, the results still provide some insight into how expertise is acquired.

A type of hierarchical chunking structure was hypothesized based on a description of con-
ceptual chunking by Egan and Schwartz (1979). They used the idea of conceptual chunking to
explain how experts and novices represent devices depicted in electronics diagrams. This
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structure is presented in Fig. 1 and essentially shows that components can be expected to be
chunked into meaningful units based on the function they perform in the device, and these
functional units then interact to produce the overall device behavior. Essentially, the middle
level is a set of subsystems that the device can be broken down into, and each of these subsys-
tems performs a particular function within the device. These subsystems can then be broken
into finer units, such as a set of basic components where each component performs a simpler
function. The two studies presented here focus on different levels of device representation as
can be seen in Fig. 1. This first study examines some basic differences in how components in
devices are represented and chunked together. The second study seeks to determine whether
seniors think about and represent devices in a more abstract functional manner than do fresh-
men.

2. Study 1: Chunking of components

This study examines how the students chunk components into larger meaningful units. Just
as experts are known to chunk elements into larger units of knowledge in other domains, it
should be the case that the more experienced students have some way of organizing knowledge
about components in a device. One hypothesis is that components will be chunked into larger
meaningful units that perform a certain function in the device. Such functional units or chunks
could occur across multiple devices in which the chunk performs the same function. One ex-
ample would be a rack and pinion, as this set of components is one common method to convert
between rotation and translation and could be expected to occur in a variety of devices.

To investigate these issues, a recall paradigm was used that extends an approach used by
others to study chunking differences in expert–novice behavior (Chase & Simon, 1973;
Reitman, 1976). The basic method is to present a stimulus, such as a chess board in a midgame
position, for a brief period of time. The participant is then asked to recall the presented stimu-
lus. In the original methodology both recall and perception tasks were used, and chunks were
identified based on interresponse times (IRTs), which are pauses between actions, that were
common to both tasks. However, later work examining chunks in Go (Reitman, 1976) found
that a common IRT could not be found for both tasks due to the fact that the chunks in Go have
an overlapping structure. This was not necessarily a problem in the chess research because the
chunks in chess have more of a hierarchical relation. In our study, only a recall task was used,
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and to avoid problems with finding an appropriate IRT boundary, a number of different mea-
sures were used to examine representation differences. In particular, we looked at percentage
recall after one exposure, errors, patterns of recall, and chunks. The stimuli being recalled were
diagrams of electromechanical devices.

2.1. Method

2.1.1. Participants
There were 15 seniors majoring in mechanical engineering who volunteered for the study.

These students were recruited from a senior engineering design course at Carnegie Mellon
University. There were 15 freshmen engineering students who also participated in the study as
partial fulfillment of a course requirement. All freshmen were enrolled in the engineering col-
lege at Carnegie Mellon, but students in this college do not declare a particular engineering ma-
jor until after their freshman year.

2.1.2. Stimuli
Three electromechanical devices were represented in schematic diagrams that indicated

how components connected together in each device. The three devices used were a drill, a pres-
sure gauge, and a weighing machine (scale). The schematics were represented in an idealized
fashion where only the type of each component and the connections between the components
were displayed. Connections between components were represented by lines connecting com-
ponents. An example design schematic is shown in Fig. 2. All of the devices contained 14 to 16
components and 14 to 15 connections. The number of unique components differed because
some types of components were used more than once in a design. The drill had only 9 unique
components, whereas the pressure gauge and weighing machine had 11 and 12 unique compo-
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nents, respectively. Each diagram also had a label at the top indicating the type of device as de-
picted in Fig. 2.

2.1.3. Procedure
Participants were asked to recall three design schematics, using a graphical interface after a

brief study period. Participants first received instructions and were allowed to become familiar
with the interface and the type of representation used in the diagrams. The user interface is de-
picted in Fig. 3, and it consists of a set of components that can be dragged over to a drawing
space where they can be moved, connected, disconnected, or removed. Participants then re-
ceived a practice trial followed by three recall trials. During each trial, the initial schematic was
displayed for 40 sec, and then the display of the user interface replaced the schematic. Partici-
pants then had 3 min in which to recall as much of the schematic as possible. The design sche-
matic was presented again for 40 sec if the participants had not recalled the design completely.
These periods of display and recall alternated until the participant recalled the device perfectly.
The task was done until perfection so that participants would be motivated to recall as much as
possible in a minimum number of viewings given that they had to wait another 3 min to obtain
another viewing of the device.
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The presentation order of the three design schematics was counterbalanced. The computer
generated a time-stamped entry in a log file for every action the participant took. The log was
detailed enough so that a participant’s actions could later be replayed. After the recall period
participants were asked to indicate how they grouped components during recall by drawing cir-
cles around groups of components in the device diagrams. They were also asked to indicate
why they grouped these sets of components together.

2.2. Results

Theresultsaregrouped into threecategories.Thefirst set containsquantitative results, includ-
ing the percentage of the devices recalled after one presentation of the diagram and the number of
errorsmadewhile recalling thedevices.Thenextsetof resultsdetails thepatternsofbehavior that
were observed while recalling the device. The final set of results deals with how components of a
devicewerechunkedduringrecall.Forall statistical results reported in thisarticle, analphaof .05
was used. When multiple comparisons were made, Bonferroni corrections were used.

2.2.1. Percentage recall and errors
The percentage of components and connections among components recalled correctly

during the first recall session of a trial was analyzed using a 2 × 3 analysis of variance
(ANOVA), with the three devices as a within-subjects factor. The average proportions of
components and connections recalled after one presentation are presented in Table 1. Recall
of components was almost perfect for both freshmen and seniors, and there was no main ef-
fect of experience level, F(1, 28) = 1.1, p = .30, or device type, F(2, 56) = 1.8, p = .17. Re-
call of connections was lower overall than for components. There was no significant main
effect of experience, F(1, 28) = 1.3, p = .26, but there was a significant main effect of device
type, F(2, 56) = 5.63, p < .01. Further comparisons revealed that the drill’s connections were
recalled better than those for the weighing machine, F(1, 28) = 11.4, p < .01, and the pres-
sure gauge connections were not significantly different from either of the other two devices.
There was no significant interaction between experience level and device for either the com-
ponents recalled, F(2, 56) = 0.7, p = .50, or connections recalled, F(2, 56) = 1.8, p = .17.
These results indicate that although freshmen and seniors performed equivalently, the
weighing machine was the most difficult device to recall correctly, and the drill was the easi-
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Table 1
Proportion of components and connections recalled after one presentation

Drill Pressure Weigh

M SD M SD M SD

Components
Freshmen .95 .07 .91 .12 .91 .09
Seniors .96 .08 .95 .09 .94 .07

Connections
Freshmen .91 .12 .74 .24 .69 .27
Seniors .88 .17 .88 .19 .79 .24



est. These differences are consistent with the idea that the difficulty of recall increases as the
number of unique components in a device increases.

A number of error types were defined that include insertion, removal, connection, and dis-
connection errors. Insertion errors occur when a component is added to the device under con-
struction and that type of component is not in the original device or when an added component
is not needed because the device under construction already includes the correct number of that
type of component. A removal error occurs when a component that is needed in the device has
already been added but the participant removes it. A connection error occurs whenever the par-
ticipant connects two components that are not connected in the original device. A disconnec-
tion error occurs when a participant has correctly connected two components in the device but
then disconnects them. The error data are presented in Table 2. Freshmen made more errors
overall than seniors, F(1, 28) = 5.9, p = .02, and there was also a main effect of device, F(2, 56)
= 4.1, p = .02. Further comparisons show that more errors were made on the weighing machine
device than on the drill, F(1, 28) = 7.5, p = .01. The interaction between experience level and
device only approached significance, F(2, 56) = 3.1, p = .054.

The only type of error that occurred frequently enough to analyze separately was the con-
nection error (see Table 2). There were effects of experience, F(1, 28) = 5.2, p = .03, and device
on the number of connection errors, F(2, 56) = 3.9, p = .03. There was also an interaction of de-
vice and experience, F(2, 56) = 5.0, p = .01. Further comparisons show that freshmen made
significantly more connection errors than seniors on the weighing machine device, F(1, 28) =
9.6, p < .01, but not on the other two devices. Freshmen made more connection errors on the
more difficult device, whereas seniors consistently made less than one connection error per de-
vice. The connection errors account for the effects seen in the overall set of errors.

The high performance on the recall measure may indicate that the task was too easy for both
groups of participants. This could be because the 40 sec for which the device was presented
was too long and diminished the differences between the two groups. This possibility is dis-
cussed in more detail later. Even with this limitation, the difference in number of errors is reli-
able, and it is related to the chunking results discussed in the following section.

2.2.2. Chunking results
There are a number of methods that may be used to determine chunks from the data that

were collected. One method would be to choose a criterion IRT that would be used to deter-
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Table 2
Average number of errors and connection errors

Drill Pressure Weigh

M SD M SD M SD

Total errors
Freshmen 1.53 2.17 2.13 3.14 4.87 4.82
Seniors 1.20 1.61 1.13 1.55 1.40 1.92

Connection errors
Freshmen 0.87 1.12 1.33 1.88 2.80 2.51
Seniors 0.80 1.32 0.73 0.88 0.67 0.90



mine chunk boundaries (e.g., Chase & Simon, 1973). In addition to the IRT technique, other
methods such as constructing lattices of chunks (Reitman & Rueter, 1980) and a type of hierar-
chical clustering (Baggett & Ehrenfeucht, 1988) have been used to determine conceptual orga-
nizations in memory. These techniques are not applicable because the lattice construction tech-
nique requires a participant to recall one device multiple times, and the clustering technique
assumes that chunks only consist of connected components. However, it was possible to use
another version of hierarchical clustering on the recall times of components. One advantage of
this technique is that it allows for chunk boundaries to be defined without having to identify a
criterion IRT to distinguish chunk boundaries. The only requirement is that recall within a
chunk should generally be faster than recall between chunks, which has been found to be true
in other work on chunking (Reitman & Rueter, 1980).

The clustering technique for defining chunk boundaries starts with the times at which each
component was added during the first recall attempt. A traditional single-linkage hierarchical
clustering algorithm was used to define chunk boundaries. This type of clustering algorithm
works by looking through the set of items and placing the two that are closest, or most similar,
into a single cluster. This cluster is then added to the set of items as one item, and the distance
between it and any other item is defined as the distance between the other item and the closest
item in the cluster. This is repeated until all of the items have been consolidated into one large
cluster. The end result is a hierarchical cluster of items that is often represented in a tree struc-
ture as shown in Fig. 4. In this study, the distance between any two components is defined as the
difference in time between when the two components were recalled. This algorithm creates a
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hierarchical tree structure in which the leaves are the components, and one example of the hier-
archical tree for the drill device is shown in Fig. 4. Each branch, or link, in the tree connects two
clusters, and the height of the link in the figure represents the distance between the two compo-
nents. Chunks are identified by determining which links in the tree should be cut to define the
chunks.

To determine which links to cut, an inconsistency score for each link is calculated, based on
the distance between the clusters of components that the link connects. The inconsistency
score incorporates information about all of the links below this one in the tree, including the av-
erage and standard deviation of the distances for each of the links below this one in the tree. It
essentially calculates a z score for this link, based on all of the links below this one in the tree.
The average of all of the distances of the links below this one is subtracted from this link’s dis-
tance, and the result is divided by the standard deviation of all of the distances of the links be-
low this one. Because our metric of distance between two components is the elapsed time be-
tween when they were each recalled, this inconsistency score is essentially a way to make a
judgment about whether the time difference is significantly larger than other time differences
for a particular participant. Large time differences are likely to be between chunk transitions,
whereas smaller ones are more likely to be within chunk transitions.

In these analyses, an inconsistency score above 0.9 meant that the link was cut to form two
separate clusters. Inconsistency values above 1.0 yielded a few large chunks, whereas values
smaller than 0.8 yielded many small chunks. A value of 0.9 was used because it was in the cen-
ter of the range from 0.8 to 1.0, and it produced between four and nine chunks for each partici-
pant. This seemed like an appropriate number of chunks, based on past research on chunking,
which indicates that the number of chunks is consistent with known working memory con-
straints for short-term recall of common words (e.g., Chase & Simon, 1973). An example of
the result of this process is illustrated in Fig. 4 where four chunks are defined by cutting the ap-
propriate links. As long as there is some consistent difference between within-chunk and be-
tween-chunk pauses, this technique will have the desired effect. The chunks identified by the
clustering in Fig. 4 are shown in the drill diagram in Fig. 5. As can be seen, this person only re-
called 10 components of the device in the first trial.

After the chunks had been determined using this clustering method, the chunk sizes for
freshmen and seniors were examined, and they did not differ. Chunks contained 1 to 5 compo-
nents with the overall average chunk size being 2.15 components per chunk. Qualitative differ-
ences between the chunks identified for freshmen and seniors were identified by examining the
frequency with which specific chunks were used by both freshmen and seniors. Only chunks
that were used by at least 5 of the students were included in the analysis so that the chunks ex-
amined were chunks that were commonly agreed on and were not unique to just 1 or 2 students.
For each chunk, the proportions of freshmen and seniors who used that chunk at least once
were calculated.

There were many similarities between the chunks used by both freshmen and seniors, but
there were some notable differences in the proportion of students who used a particular chunk.
The proportions of students who used a particular chunk are presented in Table 3. The chunks
used more by seniors than freshmen appear at the top of the table, and the chunks used more by
freshmen appear at the bottom. In general, the chunks used more by seniors tend to have a
meaningful function within the device. For instance, the large gear–rack chunk converts rota-
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tional motion to translational motion, the footpad–cylinder–cylinder and the cylinder–cylinder
chunks reduces the input force, and the motor–resistor chunk provides dampening. The chunks
used more by freshmen included chunks of the same type of component and other chunks with
less functional meaning. The one notable exception to this general pattern was the large
gear–small gear chunk, which serves to decrease velocity and increase torque. Overall, this
analysis indicates that freshmen and seniors shared some of the same chunks, but the seniors
were more likely to use chunks with a functional meaning.

As an additional way to assess whether the chunks identified by both groups were functional
in nature, an expert was asked to identify groups of components that performed a particular
function in the devices that were used. The expert identified 4 to 5 chunks for each device. For
example, the expert identified 5 chunks for the drill device, which included each pair of gears,
each shaft-bearing-ground set, and the motor–shaft–ground chunk. The expert stated that the
gear pairs increased torque, and the other chunks all served to restrict motion in some direc-
tions. The number of times that the expert chunks were used by the students was identified and
analyzed using a 2 × 3 ANOVA with device as a within-subjects factor. There was a significant
difference between freshmen and seniors, F(1, 28) = 6.37, p = .02, with seniors matching 1.2 of
the expert chunks on average and freshmen matching .78 chunks. There was also a significant
effect of device, F(2, 56) = 6.49, p = .003, with there being fewer matches on the weighing ma-
chine than the other devices.

The groups of components that the students circled after the recall task and their reasons for
grouping those components were also analyzed. The reasons written by students were exam-
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ined for any mention of the function of a group of components. As discussed earlier, there was
a distinction made between talking about the function of a group of components and the inter-
actions of those components. The participants were sorted into groups based on whether they
gave a functional reason for a grouping at least once in any of the devices. No freshman gave a
functional reason for any grouping, but 11 of the 15 seniors did, χ2(1, N = 30) = 17.37, p < .001.
A second person was also asked to code the responses, and there was moderate agreement, Co-
hen’s κ = .67. Essentially the second coder had a lower criterion for coding a chunk description
as functional and included 3 additional seniors as well as 2 of the freshmen in the function cate-
gory. This did not affect the pattern or significance of the results. The freshmen responses in-
cluded some descriptions of interactions, but they mainly gave reasons dealing with visual sa-
lience or ease of grouping names of components into some mnemonic. These results further
support the idea that the seniors were thinking about the functioning of chunks of components
more than were the freshmen.

The chunks were also analyzed in relation to the connection errors by looking at where each
participant’s connection errors occurred relative to that individual’s chunks. For both groups,
84% of the connection errors occurred when connecting two components that were not in the
same chunk. In addition, the proportion of connections falling between chunks did not differ for
freshmen and seniors, F(1, 28) = 1.68, p = .21, with freshmen and seniors having 64% and 61% of
their connections fall between chunks, respectively. However, the absolute number of these be-
tween-chunk connection errors was quite different for the two groups. Freshmen made 62 of
these between chunk connection errors, whereas seniors made only 29. This means that the hard-
est connections to remember for both groups were the connections between chunks, but fresh-
men had significantly more difficulty remembering these between-chunk connections.
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Table 3
The most frequent chunks identified by freshmen and seniors

Chunk Freshmen Seniors

Large gear–rack .13 .40
Footpad–cylinder–cylinder .33 .53
Motor–resistor .07 .27
Cylinder–cylinder .27 .40
Large gear–small gear–shaft .20 .33
Shaft–bearing–ground .20 .33
Lever–lever .20 .33
Power source–switch–motor .13 .20
Bearing–ground .40 .40
Pressure source–cylinder .27 .27
Spring–ground .20 .20
Ground–ground .20 .20
Ground–ground–ground .40 .33
Drill chuck–shaft .20 .13
Large gear–small gear .67 .60
Bearing–bearing–bearing .40 .27
Dial–torsion spring .40 .27
Cylinder–lever–lever .40 .27



2.2.3. Patterns of recall
The order in which components were recalled was also analyzed. After one component is

recalled, the next component recalled can either be connected to the previous component or
not. Recall that is highly connected demonstrates the importance of connections in the repre-
sentation and recall strategy used by the participant. Connectedness was examined by looking
at the number of breaks in recall, where a break is defined as consecutively placing two compo-
nents that are not connected. In all of the designs to be recalled, a certain number of breaks
were required to complete the design due to parallel connections, but unnecessary breaks indi-
cated that the student was not following the interconnected structure of the device during re-
call. For instance in the drill shown in Fig. 2, three breaks are required to handle the three bear-
ing–ground elements. The number of breaks above the minimum required was used in this
analysis. Freshmen made significantly more breaks in recall than did seniors, F(1, 56) = 4.84, p
= .03, as can be seen in Table 4.

The high degree of connectedness for seniors’ recall could mean that recall was done by re-
calling successive components that shared a connection. However, an alternative explanation
is that spatially proximal components have a good chance of being connected, so spatial prox-
imity could be the main factor in determining the pattern of recall. To examine this possibility,
the proportion of times participants transitioned from one particular component to the next was
examined. Fig. 6 shows a representative sample of the results of this type of analysis on a por-
tion of the drill for seniors. Only proportions greater than or equal to .2 are displayed in the fig-
ure as these correspond to the transitions made by at least two participants. With few excep-
tions the majority of transitions occurred along connections, rather than to unconnected but
spatially proximal components. Almost all of the exceptions occurred in transitions dealing
with groups of the same type of component (bearings and grounds in Fig. 6). The fact that a
number of spatially proximal but unconnected components were not recalled consecutively is
evidence against the use of spatial proximity in the representations and recall strategies. For
example, the small gear on the left side of the drill in Fig. 6 is near five different components,
but 93% of the time participants transitioned to only the connected components (the shaft and
large gear). Some of the exceptions can be explained by noting that a number of participants
added all three bearings from left to right followed by the three grounds from left to right. This
is apparently just a convenient pattern to recall this set of similar components, and it does not
seem to offer evidence for a spatial proximity explanation.

The expected proportion of transitions from one component to another was calculated by di-
viding the number of components a component was connected to by the number of compo-
nents that it was adjacent to in the diagrams. This expected proportion was compared to the ac-
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Table 4
Average breaks in reconstruction (above minimum)

Drill Pressure Gauge Weigh

M SD M SD M SD

Freshmen 3.73 (2.60) 2.60 2.80 (2.14) 2.14 5.67 (3.15) 3.15
Seniors 2.73 (2.19) 2.19 1.60 (1.24) 1.24 3.47 (1.96) 1.96



tual proportion of transitions to connected components for all of the components in all of the
devices. The components that were only connected to one other component were excluded be-
cause these components were often at the edges and, once they were transitioned to the only
transition away, involved an unconnected component. The expected and actual proportions
were compared using a Wilcoxon signed ranks test. There was a significant difference in these
proportions for seniors, z = –2.53, p = .01, with seniors making 72% of their transitions be-
tween connected components as compared to the 62% expected. Freshmen made 64% of their
transitions between connected components, which was not greater than expected, z = –.887, p
= .38. The high degree of connectedness for seniors is therefore not due to spatial proximity
alone.

Another pattern that was evident in the order in which components were recalled was that a
number of students started at the input of the device and reconstructed the device, based on the
flow of energy through the device. For example, in the drill in Fig. 2, students following this
pattern began with the power source and then proceeded to add the switch, motor, gear sets,
and drill chuck in that order. This pattern was formalized by defining it as starting with the in-
put and making three or fewer breaks in connectedness during recall. This pattern was used at
least once by 14 out of the 15 seniors and by 8 of the 15 freshmen. A chi-square test shows that
this difference was significant χ2(1, N = 30) = 3.97, p < .05. This provides some evidence that
many seniors preferred to reconstruct the device, based on the flow of energy through the com-
ponents of the device. Freshmen were less likely to reconstruct the device in any such recog-
nizably meaningful order.
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Fig. 6. Example of the percentage of transitions from one component to the next.



In summary, the recall patterns observed emphasize the importance of connectivity in the
representation of the devices. Seniors are more likely to follow the energy flow through a de-
vice’s connections from input to output, and they are more likely to recall successive compo-
nents that are connected. This connectedness cannot be explained by spatial proximity alone.
These patterns indicate that the students at least understand the flow of causal behaviors within
the device, and this understanding is of course a necessary component to understanding the
function of a component or a group of components within the device. These findings when
combined with the chunking results and the difference in connection errors provide a basis for
understanding the differences in the device representations used by the two groups.

2.3. Discussion

The results indicate that the students do decompose devices into smaller chunks, and one of
the main reasons that components are chunked together is because of the function they perform
as a group. Freshmen are less able to recognize functional groups of components, and they are
less able to fit together the chunks they do use. This is shown by the fact that freshmen make
more connection errors, and these errors occur predominantly at chunk boundaries. The fact
that the chunks that seniors identify are more likely to be functional units can be seen from the
analysis of their chunks, including comparison to an expert and the reasons they wrote for
grouping the chunks.

Another result that emphasizes the importance of functionality and connections in device
representations is that seniors recall devices in a more connected manner as measured by the
number of breaks in recall. They are also more likely to follow the energy flow through the de-
vice during recall. This could be indicative of a structured traversal of a coherent mental repre-
sentation of the given device. As discussed in the introduction, previous work indicates that a
hierarchical chunking structure such as the one in Fig. 7 is a likely structure for storing device
knowledge. If the representation of the device is a hierarchical structure such as this one, then
the strategy of following the energy path through the device during recall is accomplished by a
specific traversal of the device representation. For instance, if one starts with the device and
follows a link to the first functional unit of the device, then the first step is to recall the compo-
nents that make up that unit while remembering how they are connected. The next step is to go
back to the functional unit node and follow the link to the next functional unit. Even if the link
to the next functional unit is not recalled correctly, it may still be possible to reason about what
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Fig. 7. One possible hierarchical chunking representation.



the next functional unit may be, based on the person’s understanding of the overall device be-
havior and the functional units already recalled. This type of representation and recall process
requires that the connectivity between and within chunks be adequately represented.

One possibility is that explicit links are constructed in the representation such as those be-
tween functional units in Fig. 7. Another possibility is that the participant follows a specific en-
coding process such as encoding the input chunk as the first functional unit and then the next
set of components in the device’s flow of energy as the second functional unit and so on. How-
ever relying strictly on the ordering of functional units in the device would make it difficult to
deal with parallel connections, and the participants did not demonstrate any particular diffi-
culty with parallel connections.

The results from this study imply that the freshmen are not necessarily decomposing the de-
vice into functional units, and instead they may be creating chunks based on visual similarity,
proximity, or through a mnemonic strategy. This is apparent in the fact that their chunks relate
less to the function of the device than do those of seniors. This finding is not unexpected be-
cause it has been shown that novices often use concrete surface features, whereas more abstract
deeper features are preferred by experts (e.g., Chi et al., 1981; Feltovich, Spiro, & Coulson,
1989). It also explains why they have difficulty in remembering connections between chunks
as they do not have the functional relations between chunks to rely on as the seniors do. The
finding that their recall is less connected and less likely to follow the flow of power through the
device would also be expected if their representation does not incorporate functional chunks
and interconnections.

One limitation of this study is that devices may have been presented to participants for too
long, soparticipants found the recall tasks fairlyeasyas shownby thehigh recall performance af-
ter just one presentation of the device and the low number of errors. Participants may have used
other strategies than just chunkingbecause thedevicewaspresented for sucha relatively longpe-
riodof time(40sec).However, inastudyofchessboardpositions,whichused thesamerecallpar-
adigm while manipulating presentation time from 1 to 60 sec, it was found that participants re-
membered more chunks with longer presentation times, but there were no qualitative differences
in cognitive processes for the longer presentation times (Gobet & Simon, 2000). They found that
chess experts would occasionally combine smaller chunks into larger chunks or remember a
larger number of chunks, but individual pieces were not simply added to existing chunks. This
leads us to believe that the presentation time is not a serious issue and that, with the exception of
chunk size, the differences between freshmen and seniors would have been qualitatively similar
with a shorter presentation time. The long presentation time may be the reason that we did not
find a difference in chunk size. Freshmen would have had time to form chunks, using more time
consuming mnemonic strategies, whereas seniors would have had time to encode the few small
single-component chunks that did not fit with their larger chunks. This would have decreased the
average chunk size for seniors but increased it for freshmen.

The results of this study illustrate some key differences between these sets of students in the
early stages of acquiring expertise. Both groups are able to chunk components into larger units,
but the seniors rely more on functional information to create a coherent mental representation
of a device. The next study was designed to provide additional information on the importance
of the function of groups of components in the mental representations of engineering students.
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3. Study 2: Functional reasoning

The purpose of this study is to determine if a kind of abstract functional understanding was
more prevalent in the mental representations of seniors. Because it is apparent from the first
study that freshmen lack a strong representation of how chunks of components connect and
function, this should mean that freshmen are not as able to reason about devices in an abstract
functional manner because this ability would depend on being able to reason about the func-
tions of chunks of components and how those functions connect and interact in producing de-
vice behavior. Another purpose of this study is to see if experience in the domain will lead se-
niors to produce representations that are more similar to one another than those freshmen do.

Other work has demonstrated that people high in self-rated mechanical ability appear to rea-
son better about the functioning of a device than do people low in self-rated mechanical ability
(Heiser & Tversky, 2002). In this study it is assumed that the participants are all high in mechani-
cal ability because they are all majoring in or intending to major in mechanical engineering.
Based on these results and those of Study 1 it was hypothesized that more experienced partici-
pants would focus more on functional knowledge of a device than less experienced participants.
To investigate these issues,anewmethodofdataanalysis is introduced. In theworkbyHeiserand
Tversky, each proposition that was written by a participant was coded as either structural or func-
tional. This allowed them to show that high-mechanical-ability participants used more func-
tional propositions. In this study, latent semantic analysis (LSA) is used to test for higher func-
tional content in written text. This method does not require someone to subjectively decide
whether each proposition contains functional information or not. The data were also analyzed
using a proposition coding system as well to show that the two methods are consistent.

Students were asked to write brief descriptions of devices that were presented in diagrams.
One assumption is that the information students choose to include in a brief description is what
they find important about the device and that this importance is related to their mental repre-
sentation of the device. In addition to the issue of functional information discussed previously,
another hypothesis that is investigated is that seniors are more mutually consistent in their de-
scriptions than are freshmen. The reasoning behind this idea is that seniors have gone through
years of formal education, which may lead them to think about the devices in a similar manner.

3.1. Latent Semantic Analysis

The participants’ descriptions were analyzed using LSA. LSA was originally developed as
an information retrieval technique designed to overcome synonymy problems (Deerwester,
Dumais, Furnas, & Landauer, 1990). It has also been used for a number of other purposes, in-
cluding as a model of text comprehension (Landauer & Dumais, 1997). More recently it has
also been used to develop similarity metrics to be used in the analysis of data from complex
problem-solving trials (Quesada, Kintsch, & Gomez, 2002). LSA begins with a
word-by-document frequency matrix where the number of times each word appears in a docu-
ment is recorded. This matrix can be interpreted as a multidimensional space where each col-
umn is a document vector, and each word is a row vector. For example, a document would be a
column of numbers indicating the number of times each word appeared in the document. Each
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of the numeric entries in the document column can be seen as the coordinate of the document
vector in one dimension of the multidimensional space. LSA reduces the dimensionality of this
space to yield a multidimensional semantic space where each document or word is represented
as a vector in that space. Through this dimensionality reduction technique LSA can provide a
good measure of semantic similarity based on the shared context of two words. For example,
the words physician and doctor may not appear in the same document, but LSA may conclude
that they are similar, based on the fact that both words occur with words such as patient, hospi-
tal, and nurse. Similarities in this multidimensional semantic space can be computed between
any two words or documents by computing the cosine of the angle between the vectors repre-
senting those two words or documents. The cosine is a measure of how closely aligned in
meaning any two words or documents are. It ranges from –1 to 1, with smaller angles receiving
values closer to 1, which indicates a high degree of alignment and similarity. However, nega-
tive values do not necessarily indicate that items are dissimilar in terms of semantic meaning,
but negative and near-zero values do indicate that the items do not occur in the same contexts.
For example, the word hot may occur in many of the same contexts as the word cold, and the
two words would receive moderate to high cosine values, but the words planet and tissue
would receive negative or near-zero cosine values.

One set of researchers used LSA to try to identify shared-design understanding among a set
of designers (Hill, Song, Dong, & Agogino, 2001). That study was concerned with building in-
formation management tools that retrieved relevant information, based on a shared under-
standing of the design problem. This shared understanding was determined by using LSA to
analyze documentation from design projects. Their use of LSA allowed for a representation of
the desired design project to be created, but unlike this study, they were not concerned with
identifying properties of this representation.

Dimensionality reduction techniques such as LSA are able to capture a number of the key
similarities and differences between documents in a given set. These properties make LSA an
excellent tool for exploring similarities and differences between documents written by partici-
pants, thus highlighting differences in the content of their representations.

3.2. Method

3.2.1. Participants
The participants were 44 volunteers from a senior mechanical engineering design class and

24 freshmen volunteers from a freshman mechanical engineering class. The freshmen partici-
pants were taking their first mechanical engineering course when the study was run.

3.2.2. Stimuli
Three electromechanical device diagrams were used in this study. These diagrams were

taken from patents for a power screwdriver (Fig. 8), a cordless weed trimmer, and a drum brake
system. The diagrams were mostly cross-sections of the devices and had lines labeling key
components. The diagrams were used exactly as they appeared in the patent except that some
excess and duplicate labels were removed. Each diagram had 9 to 11 labeled components and
had the name of the device printed in large bold letters at the top.
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3.2.3. Procedure
Participants were told that they would see diagrams of three electromechanical devices that

had been taken from patents. They were told that their task was to write a description of each
device, but they were not told what kind of information to include in their descriptions. If they
asked what to include, they were told to include whatever they thought important as long as it
pertained to the device shown. Participants viewed the device on a computer screen and were
told that they could click a button beneath the diagram that would remove the diagram and take
them to a text area where they could type their description. There was also a button below the
text area to take them back to the diagram, and they could alternate back and forth between de-
scription and diagram as often as they wanted. Each time they switched between the two views,
an entry was added to a log file, and this state of their description was saved to a time-stamped
file. Participants were instructed to spend about 5 min describing each device. They were not
forced to spend exactly 5 min on each device but had to pace themselves to finish all three de-
scriptions in 18 min. There was a clock displayed in the lower right corner of the screen to help
them pace themselves.

After the descriptions had been written, the participants were asked to rate their prior
knowledge of each device (1 = poor, 7 = good). The freshmen participants completed an ad-
ditional set of eight true–false questions for each device before they gave their ratings. This
set consisted of a mix of questions that emphasized either the structure–composition of the
device or the function of components within the device. They were not allowed to view any
of the diagrams while answering these questions. The purpose of these questions was to as-
sess whether freshmen were able to access both functional and structural information from
the diagrams. Seniors have used these types of cross-section displays before so it was as-
sumed that they would be able to interpret them. The ratings were done after the questions
because the ratings would involve presenting all three devices again, and the questions were
intended to assess whether the participants could recall the structural–functional information
without an additional presentation of the devices. The presentation order used here does
mean that answering the questions could have influenced the prior knowledge ratings for the
freshmen.
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Fig. 8. Example diagram seen by participants (figure adapted from Alsruhe, 2001).



3.3. Results

Four seniors were excluded from all analyses because they failed to finish in the allotted
time. One freshman and 5 seniors were also excluded because they either spent less than 3 min
or greater than 7 min on a particular description.

The ratings for different devices for each group of students were analyzed using Friedman’s
test for related samples. Freshmen rated themselves as having more knowledge about some de-
vices than others, χ2(2, N = 21) = 7.3, p = .03, with the weed trimmer being rated higher than
the screwdriver, χ2(1, N = 21) = 5.3, p = .02. There were no significant differences between de-
vices in the seniors’ ratings. The rating differences between groups of subjects for each device
were analyzed using the Mann–Whitney U test. There were no significant differences between
the ratings of freshmen and seniors for any of the devices. The true–false questions were in-
cluded to assess whether freshmen processed and remembered functional and structural
knowledge about a device. All freshmen performed well on these questions, averaging 6.8, 7.2,
and 7.2 questions out of 8 correct on the brake system, screwdriver, and weed trimmer, respec-
tively. Any differences observed in functional knowledge were therefore not due to the fresh-
men being unable to access this knowledge.

One parameter that can be adjusted in LSA is the number of dimensions retained in the mul-
tidimensional space. Based on judgments from the number of dimensions used in previously
published work with LSA, it was estimated that a good number of dimensions would be in the
range of 50 to 300. LSA work that has been done with much larger text corpora has found that
optimal dimensionality was around 300 dimensions (e.g., Landauer & Dumais, 1997). Be-
cause our corpus of device descriptions was much smaller, fewer dimensions were needed to
capture most of the important information in the semantic space. The first 100 dimensions
were used for all of the LSA results reported here.

The hypothesis that seniors are more consistent as a group than are freshmen was tested by
computing a similarity measure between each participant’s description of a device and the av-
erage vector for that device. The average vector was found by averaging the individual vectors
for documents describing a particular device. One way to think about this average is as a type
of prototypical description. A separate average was produced for freshmen and seniors for
each device. For instance, all freshmen brake-device vectors were averaged to produce the av-
erage freshman brake description. Then for each device the average freshman vector was sub-
tracted from the average senior vector. This produces a vector for each device that points from
the average freshman description to the average senior description. Each participant’s descrip-
tion for a particular device was then orthogonally projected to a location on this vector. The de-
scription’s projected location along this vector provided a way of examining freshmen and se-
nior differences. This method of comparing freshmen and seniors is more complex than just
comparing distances in the original multidimensional space, but it provides a way of identify-
ing the subset of dimensions most relevant for the purpose of distinguishing freshmen and
seniors.

Due to the way the vector is constructed and the way documents are projected to points on this
vector, the average senior description for a device will be a certain distance away from the aver-
age freshman description. The first test was whether there was a significant difference between
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where theseniorand freshmendescriptions fall on this line, and theywere significantlydifferent,
F(1, 54) = 118.1, p < .001. The hypothesis that seniors are more similar to one another as a group
than freshmen was then tested by looking at how far freshmen and seniors are from the average
freshmanandseniordescriptions, respectively.For instance, seniors shouldbemore tightlyclus-
tered around the average senior description than freshmen are around the average freshman de-
scription. This difference was also significant, with seniors deviating less from their average de-
scription than freshmen from theirs, F(1, 54) = 23.7, p < .001. This supports the idea that seniors
are more likely to be consistent with one another than are freshmen on the information they in-
clude in descriptions of a particular device. This finding is similar to what has been found in other
domains where experts are more alike than are novices (McKeithen et al., 1981).

The search engine qualities of LSA were used to examine the hypothesis that seniors in-
cluded more information about the function of a device in their descriptions. The documents in
the multidimensional semantic space can be compared to a query vector, and their similarity to
this vector can be assessed using the cosine measure. To formulate a query that represents
function information, a set of words that are associated with describing the functioning of a de-
vice were combined into a single query. Stone and Wood (2000) developed a vocabulary to ex-
plain the chain of functions that produces a device’s behavior. They showed that this vocabu-
lary can be used to represent a variety of different devices. The function words they use and the
associated list of synonyms that they define for those words totals 73 words (e.g., actuate, ad-
just, control). Three of these words were judged to deal more with the structure of devices, and
they were excluded from the query. These words were connect, locate, and join. The remaining
70 words were combined into a query that was submitted to the LSA space.

A cosine score was generated for each document according to its similarity to this query of
function words. The average cosine values are displayed in Table 5. Both experience level, F(1,
54) = 5.3, p = .03, and device type, F(2, 108) = 8.9, p < .001, had significant effects on a docu-
ment’s similarity to this query, and there was no interaction between these two factors. Further
contrasts revealed that the weed trimmer descriptions had higher cosines than both the drum
brake, F(1, 54) = 13.7, p < .001, and the screwdriver, F(1, 54) = 13.0, p = .001. The fact that de-
scriptions written by seniors were more similar to the function words than those written by
freshmen indicates that seniors included more content that is similar in meaning to the function
words in the query. The magnitudes of the cosines are not very high because for any particular
device description there are many function words that it does not contain. In this case the rela-
tive values of the cosines are more important than their magnitudes. It is the relative similarity
to the function words that we are examining. Two examples of the descriptions that were used
in the LSA analysis are presented in Fig. 9. One is a description that was ranked as highly simi-
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Table 5
Average similarity to function words vector, using the cosine measure

Brake Screwdriver Trimmer

M SD M SD M SD

Freshmen .13 .06 .13 .07 .18 .07
Seniors .17 .09 .16 .07 .21 .09



lar to the function words query, and the other one is an example of a description from near the
bottom of the rankings. It should be noted that even the low function description still includes
some function information; however, it differs by including more information about other
aspects, such as the location of components, and less function information than the
high-function description.

Because this method of assessing function content has not been used previously, we also
compared it to a method of assessing function content that involves coding propositions for
function content used by Heiser and Tversky (2002). They essentially coded each proposition
in a description as either expressing function or structure information. We elaborated on their
coding scheme by breaking their structure category into categories we labeled location and
properties. Location information describes how components are connected or where they are
in a device. Properties of a device or components (e.g., size, shape, length) were included un-
der the properties category. Their function category was broken down into two categories that
we labeled interaction and function, which is the same distinction used in Study 1. Again, in-
teractions were generic descriptions of component interactions that only conveyed which com-
ponents were acting and possibly some causal information. Functions were descriptions of
component interactions that were more detailed than actions, or they were statements that indi-
cated the purpose of a component or set of components in the system. For instance, functions
could differ from actions by indicating duration of motion, purpose of the component within
the device, or other qualities beyond the basic fact that the components interacted in some way.
In general, actions indicate knowledge of the causal behaviors in a device, whereas functions
indicate knowledge in addition to causal behavior. There was also an “Other” category for
statements that did not fit in the other four categories.
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The descriptions were broken into propositions and coded into one of the four categories in
the coding scheme. A random subset of the descriptions (one third of the total) was coded by an
independent coder, and there was 86% agreement between the two coders, Cohen’s κ = .82.
The proportion of propositions coded into each category is given in Table 6. It can be seen that
the largest difference between freshmen and seniors was in the function category. The propor-
tion of propositions that were classified as function should be a measure similar to that com-
puted by LSA. Seniors had a significantly higher proportion of function statements in their de-
scriptions than did freshmen, F(1, 54) = 5.79, p = .02. The proportion of function statements is
also correlated with the LSA cosine score, r(56) = .71, p < .001. These results further support
the finding that seniors think about function more than freshmen, and they also indicate that the
more automated LSA analysis agrees fairly well with a more traditional coding-scheme
analysis.

3.4. Discussion

The results of this study support the idea that function information is more prominent in the
representations used by seniors, and there is also support for the idea that seniors employ more
similar representations than do freshmen. The finding that freshmen could answer questions
about the function of components in a device means that they were capable of understanding
the function of a set of components when asked to, but they did not include as much function
content as seniors in the device descriptions they generated. This is a further indication that
function was not as prominent in their representations as it was in those of seniors. It could in-
dicate that for seniors function was the glue that bound the different parts of the device to-
gether, whereas for freshmen it was an additional part of a more fragmented representation.

These findings are consistent with the general notion that the main difference between the
two groups of students is the ability to represent the functionality of chunks of components in a
device and how these functional units interact to produce device behavior. This representa-
tional advantage is one reason seniors were able to minimize errors in the device recall task.
Focusing on the function information may have allowed seniors to form a coherent representa-
tion of the device, and this common focus is likely the reason that seniors were more similar to
one another in their descriptions than were freshmen.

LSA was used as a tool for investigating the content of knowledge representations. This type
of technique has its strengths and weaknesses. Its strengths are that it is an automated tech-
nique that can identify differences among writing samples, and it is consistent with at least one
other type of analysis. However it is difficult to use as a purely exploratory tool due to the high
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Table 6
Average proportion of propositions in each coding category

Property Location Action Function Other

M SD M SD M SD M SD M SD

Freshmen .18 .08 .22 .13 .22 .10 .24 .09 .15 .16
Seniors .17 .11 .21 .14 .20 .11 .32 .15 .11 .19



dimensionality space in which documents and words are represented. Using such a high di-
mensional space means that questions must be formulated in terms of locations in this multidi-
mensional space. For instance assessing the functional content of each document in this study
required the creation of a vector that represented a document high in functional content. It may
be difficult or impossible to formulate certain questions of interest in terms of locations in a
multidimensional space. In cases where this is possible, LSA is able to answer questions in a
more automated way than existing techniques. Another potential concern is that LSA may not
be able to capture content across a set of words. For instance, a student may describe the func-
tioning of a set of components across a phrase. LSA treats each document as just a group of
words without considering order information. A human coder would be able to recognize the
meaning of the phrase, but LSA may not be able to. We have attempted to alleviate this concern
by showing that the LSA measure we used was well correlated with the results from human
coders.

4. General discussion

The results from both studies support the idea that more experienced engineering students
represent and reason about the functionality of a device and groups of components better than
less experienced students. This is not to say that freshmen cannot or do not represent functional
content, but rather that they are less able to construct or maintain such representations. The re-
sults are consistent with the kind of hierarchical chunking structure that has been proposed for
knowledge representation in a number of domains. One such model has been presented in Fig.
7, which is loosely based on a description of conceptual chunking by Egan and Schwartz
(1979). The main characteristics of this model are that devices are composed of functional
units, which include groups of components acting to achieve some function. In this type of rep-
resentation, function is the glue that holds everything together in a coherent representation.

Our results show that freshmen differ from seniors in their ability to represent the intermedi-
ate levels where chunks of components perform some subfunction of the device. The freshmen
are able to chunk components together, but their chunks do not necessarily correspond to a set
of meaningful functional units that together produce the behavior of the device. In this respect,
seniors have a more integrative and less fragmented representation of the relation of the device
and the components of which it is composed. This framework makes it easier for the seniors to
recall devices because they have more constraints with which to reason. For instance, seniors
can reason about which components go together to perform certain functions, and they can also
reason about which functions may be necessary for overall device behavior. Freshmen on the
other hand are less able to do this, and so they have more difficulty connecting together chunks
and are less likely to talk about this abstract level of functionality when describing a device.
This type of hierarchical representation also has implications for how devices are perceived
and designed by engineers.

Observations of engineers have shown that they begin working on a design problem by
decomposing it into modules based on the constraints of the problem with each module per-
forming a certain function in the device, and it is rare for this decomposition to change dur-
ing the design process (Ball et al., 1994). This process seems analogous to the way experts
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at solving physics problem can easily identify categories of problems and proceed to solve a
problem with the appropriate schema (Chi et al., 1981). It is easy to see how the representa-
tion structure identified here supports this process of decomposing a device into separate
functional modules. In fact if the top node of Fig. 7 represents a category of devices instead
of one device, then this hierarchical structure allows the engineer to easily retrieve an appro-
priate plan for device decomposition from memory, given that a certain type of device is de-
sired. Depending on how routine the design task is, this representation may then allow for
the activation of appropriate schemas that enable the engineer to easily produce solutions
that accomplish each module’s function. This illustrates how using an appropriate knowl-
edge representation can transform a design problem with a potentially intractable search
space into a manageable problem.

The results provide further insight into the early stages of expertise acquisition, which have
received relatively little attention. The transition from novice to expert in this domain appears
to involve being able to identify meaningful groups of components that perform a function as
well as being able to represent and reason about how these groups of components interact to
produce the overall device behavior. Seniors have a more coherent representation of devices,
and the main reason for this coherence seems to be the importance they place on function. By
breaking the device into functional chunks, the device can be understood as a series of func-
tions that produce some transformation from input to output. This same principle then applies
to the chunks that were created, as each one can be broken up into a set of interacting compo-
nents that performs some function. More complex devices than the ones studied here may re-
quire additional levels of functional units in traversing the levels between individual compo-
nents and the overall device.

It seems likely that further changes in representation would occur as these engineers be-
come professionals and acquire further experience. Although the work presented here focuses
on the early acquisition of expertise and not on professionals, it does raise some interesting is-
sues concerning the representations that experts might use and has potential implications for
engineering education. Future work should include longitudinal studies that would delineate
the time course of learning and help in identifying potential improvements in engineering edu-
cation. Although learning is the most likely explanation for our findings, such studies would
also completely rule out other less likely causes such as attrition and selection effects.

In general, the early stages of expertise appear to involve the creation of advanced knowl-
edge structures that support expert performance in the domain. The knowledge representations
appear to change from fragmented structures into more advanced coherent representations as
expertise is acquired. This process can also be seen in the multiple representations of medical
students who have assembled a network of causal scientific knowledge but have not yet linked
it together with practical clinical knowledge (Hmelo, 1998; Patel, Evans, & Groen, 1989). In
our studies, the seniors possessed a unified and connected representation of devices through
their attention to function, but the freshmen lacked such a coherent representation.

The function of groups of components is not an obvious property of any single component
or device, but it is a higher order property that allows the expert to work in the domain. Our re-
sults concerning the early acquisition of expertise in this domain make it apparent that the at-
tention to function is enabling the seniors to form a coherent representation of devices. This at-
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tention to the functional properties and relations of groups of objects in a domain can be seen in
a number of different domains of expertise. Work in chess has shown that attack and defense
relations between chunks of pieces are important components of a chess master’s representa-
tion (Chase & Simon, 1973). In computer programming the function of keywords and groups
of these keywords are important aspects of an expert’s representation (McKeithen et al., 1981),
and work on understanding how people understand complex systems has shown that functional
relations are present in the representations of experts but not in novices (Hmelo-Silver &
Pfeffer, 2004). It seems likely that functional properties play a key role in the development of a
coherent representation in other domains as well.

It is clear that there are changes in the representation of device information as expertise is
acquired. In some ways these changes are consistent with what is known to happen in a number
of other domains of expertise, but there will always be some elements that are specific to the
domain under investigation. The specific representational structures that arise in these differ-
ent fields are always partially determined by domain-specific properties. In the domain of en-
gineering design, the necessity to design complex functioning devices leads to a hierarchical
representation where the parts are related through functional relations. The hierarchical de-
composition of functions is a necessary part of the representation because it may not be possi-
ble to consider the entire device even for moderately complex devices. This kind of partial
decomposability is one approach people use to deal with complexity (Simon, 1969). Computer
programming has a similar concern for decomposing complex programs into smaller func-
tions, and it has been shown that expert programmers also have a hierarchical representation
concerned with functional relations (McKeithen et al., 1981). Physics is concerned with ex-
plaining the behavior of objects, using just a few underlying principles, and it has been shown
that one of the primary structures for experts in this domain are schemas that identify the corre-
sponding physical principle to use for a particular problem (Chi et al., 1981). These are just a
few examples, but the general point is that the characteristics and demands of the domain com-
bined with the limitations of the cognitive system lead to the various representational struc-
tures seen in different domains of expertise.

Understanding these structures and how they arise provides important insights into the
structure and processes of the mind, and it leads to a better understanding of performance in
the domain, which can lead to improvements in cognitive aids as well as in education. For
example, the different representations that the freshmen and seniors use may help explain
differences in the design process that novices and experts use. As noted before, it has been
shown that novices tend to approach design problems in a depth-first manner, whereas ex-
perts use a breadth-first approach (Ball et al., 1997). This could be due to a fragmented rep-
resentation of the device as the novices have more trouble seeing how the various subsys-
tems interact and decide to complete one subsystem before moving on to the next. If this is
the case, then students may benefit from instruction that makes the functional properties of
groups of components more concrete. This may help them incorporate important but ab-
stract functional properties into their representations of devices. The studies reported here
address differences in representation. Future work should focus on mechanisms that can ex-
plain how these changes occur and what specific information and experiences lead to these
changes.
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