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Abstract. A simple learning mechanism was added to an agent-based 
computational design system to see if it could then transfer knowledge 
across problems. An existing system, A-Design, was enhanced by 
giving it the ability to store useful design knowledge in a memory 
store so that this knowledge could be used in new design problems. 
Three electromechanical design problems were used to evaluate this 
new learning mechanism, and results indicate that this simple learning 
mechanism is successful at transferring design knowledge to new 
problems with some limitations. 

1. Introduction 

Human designers typically become better at designing devices in a domain 
as their experience in that domain increases. This learning process is gradual 
and has been documented in a number of other domains (Chase and Simon 
1973, Larkin et al. 1980, Reitman 1976, Richman et al. 1995). The reason 
for this improvement in performance with experience is due in part to the 
ability of the designer to transfer knowledge learned in one problem to the 
problem that is currently being pursued. The ability to transfer knowledge 
between problems is an important process which has been implemented in 
only a few computational design systems. 

Case-based design systems such as CADET (Sycara et al. 1991), 
ARCHIE-II (Domeshek and Kolodner 1991) , and Kritik2 (Goel et al. 1997) 
all have the capability of transferring the knowledge they have stored as 
cases to new problems. However, only some of the systems have the 
capability of indexing new cases into memory so that the design experience 
can accumulate over time (Goel et al. 1997). While these systems are able to 
implement a form of knowledge transfer, there are other forms in which the 
knowledge being transferred is not an exact part of a previously encountered 
design. There are some cases where transfer of more abstract knowledge 
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may be beneficial. In these cases, another transfer process may be required 
such as analogy. 

Analogy is a powerful method that may be used to transfer knowledge 
both within and across domains. Analogies could be used to increase 
understanding of a novel design by allowing the designer to map previous 
experience onto the new device. There are many other uses for analogy in 
design, and there has been some work on models of design by analogy 
(Bhatta and Goel 1996, Howe et al. 1986, Huhns and Acosta 1988). Other 
methods of transfer besides case-based reasoning and analogy have also 
been explored. 

However, there have been fewer attempts to incorporate knowledge 
transfer into more search oriented design systems. These systems usually 
employ a form of search that takes advantage of computational power to 
search a large number of possible designs, and they have been based on 
traditional AI search techniques (Ulrich 1988, Welch and Dixon 1994), 
genetic algorithms (Brown and Hwang 1993), simulated annealing 
(Szykman and Cagan 1995), and a number of other techniques. This paper 
describes an attempt to modify such a design system in order to incorporate 
some knowledge transfer processes.  

A-Design is a multi-agent design system based on an iterative stochastic 
algorithm which in many ways resembles a genetic algorithm (Campbell et 
al. 1999, Campbell et al. 2000, Campbell et al. 2001). The fact that the 
system is agent-based provides a natural location for the new learning 
processes since they can be embodied in the agents. The work presented here 
is an attempt to augment A-Design with a simple learning mechanism that 
allows it to transfer knowledge across design problems. The idea is to give 
the system the capability to extract knowledge as it solves design problems 
which can then be used to improve performance when solving novel 
problems. This process allows A-Design to work with design knowledge at 
an abstract level which is not tied to a specific design, but using this 
knowledge does not require a complex analogical process. An introduction 
to A-Design is presented first followed by a description of the changes to the 
system that allow it to learn from its design experience. 

2. Background: A-Design 

An introduction to A-Design is required in order to explain how the agents 
in the system produce designs, and how the system was modified in order to 
include the new learning processes. A detailed description of A-Design can 
be found in Campbell (Campbell 2000). A-Design is an agent-based design 
system that produces an array of conceptual design solutions in response to a 
set of input and output constraints for a design problem. 
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A design problem is specified to A-Design by specifying the input and 
output constraints of the desired device in A-Design’s representation. For 
example, a punch press could be specified to the system by indicating that 
the input is a downward force on a handle, and the output of the device is a 
much larger downward force that drives a punch into some material (Figure 
1). Along with these general input and output specifications, a number of 
other input/output constraints are specified such as the desire to minimize 
handle displacement in the punch press (shown as a goal of zero meters of 
displacement in Figure 1). This problem also specifies that the punch should 
only be displaced by .25m. In addition to these constraints a number of other 
objectives can be specified such as minimizing the cost and weight of the 
device. Once a problem and all of the associated objectives have been 
specified, A-Design’s iterative design process attempts to produce a design 
that optimizes these design goals. 

 
 
 
 

 

Figure 1.  The specification for the punch press problem. 

2.1. ITERATIVE DESIGN PROCESS 

A-Design’s iterative design process is similar to a genetic algorithm because 
in each iteration a number of new design candidates are produced by the 
system, and then the best of these designs are chosen to be the basis for the 
production of new designs in the next iteration. The basic structure of A-
Design’s iterative design process is shown in Figure 2 along with the set of 
agents associated with each part of the process. 

The design process begins with a set of configurations agents (C-agents) 
who construct candidate designs using a library of embodiments. Each C-
agent adds one embodiment to an incomplete design until either the design is 
complete or a maximum number of embodiments have been added to the 
design. A candidate design starts off as just a set of input and output 
constraints to which components can be added. These input and output 
constraints are represented in structures called functional parameters (FP’s). 
An FP represents the characteristics of an interface between components, 
and a C-agent utilizes the qualitative information in an FP to determine 
which embodiments in the catalog can be connected to the incomplete 
design. Once an embodiment is added to one of the FP’s, the free ports of 
the embodiment are included as new FP’s where future embodiments can be 
attached. A form of qualitative reasoning is used to update the constraints in 

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

Punch Press problem
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the incomplete design as each embodiment is added. A candidate is complete 
once it has connected the input and output FP’s and has qualitatively 
satisfied the input and output constraints. A C-agent chooses which 
embodiment to add to an incomplete design based on a set of preferences 
built into the agent, the current state of the incomplete design, and other 
influences originating from the manager agents in the system. For example, 
some C-agents may prefer hydraulic components while others prefer 
electrical ones or components connected in series over ones connected in 
parallel. The current state of the design can also influence which 
embodiment a C-agent selects. If a device should have a bounded 
displacement at the output such as in the punch press example in Figure 1, 
then an agent would prefer components which accomplished this goal when 
added to the system. The C-agents’ choices are also influenced by feedback 
they receive from manager agents in the system as discussed below. Once 
the set of C-agents have constructed a set number of designs these designs 
are passed to a group of instantiation agents (I-agents). 

 
 
 
 
 
 

 
 
 

 

 

Figure 2. A-Design’s iterative design process. 

I-agents take the configuration designs from C-agents and instantiate the 
parameters in the system with values obtained from a catalog of components. 
Each embodiment in the configuration has a set of parameters such as 
length, weight, or resistance. These agents also have a set of built in 
preferences. For example, some I-agents may prefer using components that 
are low cost while others prefer those that are low weight. Once all of the 
components in a design have been instantiated, equations that describe the 
behavior of the design can be extracted. These equations allow the design to 
be evaluated on how well it satisfies the constraints of the given problem. 
For example, the equations extracted from a punch press design are then 
used to evaluate how much the handle is displaced since that is one of the 
specified constraints. Each device is evaluated along the dimensions 
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specified in the problem, and these evaluations are combined into a linearly 
weighted sum. All of the devices are then sorted by this sum and good and 
poor devices are separated based on this ordering. These design partitions 
are then passed to a set of manager agents (M-agents). 

M-agents take the current design population and produce feedback that 
controls how other agents in the system operate. First, the agents which 
contribute to good and poor designs are examined and the probabilities 
controlling how often those agents contribute to designs are adjusted. A C-
agent that contributed to a number of good designs will be called more 
frequently than one who contributed to many poor designs. The M-agents 
keep track of the number of good designs that each C/I-agent contributes to, 
and the probability that a specific C/I-agent will be called upon in the future 
is a function of its past success. These statistics are used for all of the agents 
except for the M-agents. Managers also look for trends in the design 
population. Trends are groups of agents or connected embodiments that 
appear together in a number of designs (see example in Figure 3). Good 
trends are found by examining the top six designs, and bad trends are found 
in the worst six designs. Good trends are placed on a todo list and bad trends 
on a taboo list. These lists work by encouraging agents to reproduce 
combinations of agents or embodiments that are on the todo list and 
discouraging agents from reproducing the groups on the taboo list. In this 
manner, the todo/taboo lists allow the M-agent to influence the designs that 
are generated in the next iteration of the design process, but they exert this 
influence only within a given run on a single problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. A trend is found by multiple designs with the result circled 

In addition to passing the good designs from the current iteration into the 
next iteration, all good designs are passed to fragmentation agents (F-
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agents), who take out one or more components of the design. These 
fragmented designs are then reconstructed and become part of the next 
iteration’s design population. This fragmentation process allows good 
designs to propagate similar designs to the next iteration with the hope that 
the changes made to the design will improve it. The design population now 
consists of the good designs plus the newly reconstructed designs. In the 
next iteration the C-agents produce the number of new designs necessary to 
bring the design population back to the original number of designs, and this 
design population level is a parameter of the system. This iterative process is 
the basis of the A-Design system. 

3. Learning Across Problems in A-Design 

We extended A-Design so that it could learn from its design experiences. In 
order to do this A-Design needs to be able to extract knowledge from its 
problem solving activities, and once it has this knowledge there has to be 
some way of applying it to new design problems. One type of information 
that A-Design already knows how to extract is the good trends in a set of 
designs. The sets of interconnected embodiments that appear on the todo list 
are subsystems that appear in a number of good designs, and so it is likely 
then that these subsystems perform well in the current problem and may be 
worth remembering for future use. 

A-Design’s design process is series of iterations in which the current 
designs perform the same as or better than those in the previous iteration, 
and so it seemed to make sense that the subsystems found on the todo list in 
the final iteration were the ones to be remembered in some kind of memory 
store. Each subsystem appearing on this list is extracted and placed into 
memory as a chunk of knowledge. Each chunk in memory is indexed by its 
input and output constraints since this is the only information that is needed 
to determine if a component can be added to an incomplete design by the C-
agents in the system. An example chunk consisting of a belt and pulley 
connected together is shown in Figure 4. This chunk extraction process is 
only half of the knowledge transfer process, and so a new set of C-agents 
were added to the system and given the ability to add chunks from memory 
to designs during the configuration part of the design process. 

These memory agents (Mem-agents) add components to incomplete 
designs just as the C-agents do except that they are adding chunks from 
memory instead of embodiments from the embodiment catalog. There is a 
three step process by which a chunk is added to a design (Figure 5). First, a 
memory agent is called to work on an incomplete design. The memory agent 
then examines the open FP’s in the system to determine where chunks may 
be added. The agent then looks in memory for a chunk that is compatible 
with one of more of the FP’s in the design and adds this chunk. As 
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mentioned before, all chunks are indexed in memory by their input and 
output constraints which are essentially input and output FP’s for the chunk. 
Chunks can then be retrieved from memory either based on their input, their 
output, or both. Each of these retrieval methods is embodied in one Mem-
agent. For example, the Mem-agent implementing the input retrieval strategy 
will search for a chunk in memory whose input constraints match one of the 
open FP’s in the design. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. An example design chunk 

There are some cases in which multiple chunks in memory are retrieved 
as possible chunks to be added to a design. In this case, the agent needs a 
way of determining which chunk to add. The chunk could just be randomly 
selected from all possible chunks, or there could be some form of learning 
that takes place within the memory agent that allows it to pick the chunk 
most likely to produce a good design. The second option was implemented 
and is based on learning mechanisms found in the ACT-R model of human 
memory (Anderson and Lebiere 1998). Each memory agent is informed 
about the consequences of its actions by the manager agent, and the memory 
agent can then use this feedback to choose among multiple chunks when it 
has to. When a Mem-agent adds a chunk to a design, the design can either 
end up being a good design or a poor design. The proportion of good designs 
that result from using a particular chunk is calculated. When multiple chunks 
are retrieved, the probability that any particular one is chosen is just the 
proportion of good designs for that chunk divided by the sum of the 
proportions for all of the chunks retrieved from memory. If the proportion of 
good designs for a particular chunk is below some minimum level then this 
minimum proportion is used instead of the actual value so that every chunk 
has at least a small probability of being chosen regardless of its past 
performance. This mechanism is also similar to the strategy for move 
selection in the simulated annealing algorithm found in (Hustin and 
Sangiovanni-Vincentelli 1987). These new additions to A-Design were then 

Design Chunk
Belt-pulley-chunk
Isa: design-chunk
Input-domain: translation
Input-interface: bolt
Output-domain: rotation
Output-interface: shaft-hole
Components: (belt pulley)
Connectivity: port-1 of component-1 is connected to port-1 of component-2

Design Chunk
Belt-pulley-chunk
Isa: design-chunk
Input-domain: translation
Input-interface: bolt
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Components: (belt pulley)
Connectivity: port-1 of component-1 is connected to port-1 of component-2
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tested to see if they allowed the system to successfully transfer knowledge to 
new problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Memory agents retrieve chunks from memory 

4. Testing Learning 

The chunk learning mechanism of A-Design was tested to see if it allowed 
the system to demonstrate learning both within and between problems. 
Learning within the same problem is simply the case where A-Design works 
on a design problem, learns chunks, and then works on the same design 
problem again with the new chunks. Within problem learning should 
indicate whether the chunking mechanism is allowing the system to learn 
and apply useful knowledge about the design problem. Between problem 
learning occurs when A-Design applies chunks learned in one problem to a 
new design problem, and it is this type of learning that the chunking 
mechanism was designed to accomplish. 

Within problem learning was evaluated by running A-Design 20 times on 
one problem, and in each of these runs, a set of chunks was generated from 
the final design population. A-Design was then run again on the same 
problem 20 times, once with each set of learned chunks. The number of 
iterations in each run was 60, and the design population was set to 120 
designs. A graph of A-Design’s performance on a design problem can be 
constructed by taking the evaluation score for the best design at each 
iteration and averaging this evaluation across all twenty runs of the problem. 
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This leads to a graph similar to Figure 6 in which each line in the figure 
shows A-Design’s performance on one design problem. The performance 
difference between the initial problem and the second attempt at the problem 
was measured in three ways (see Figure 6): the evaluations of the initial and 
final designs for each condition can be compared and the number of 
iterations until a specified evaluation level is reached can be compared. The 
comparison of the number of iterations can be looked at as the number of 
iterations that were saved by the presence of chunks and it will be referred to 
as a measure of savings. The criterion evaluation level for each problem 
presented here is just the average evaluation score obtained in the final best 
design without using a set of stored chunks, i.e. just the performance of the 
A-Design system without the new learning mechanism. Any differences in 
performance from the first attempt to the second can then be attributed to the 
chunks that were used in the second attempt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  An illustration of the three measures of performance 

4.1. DESIGN PROBLEMS 

Three electromechanical design problems were used to assess the benefits of 
the chunking mechanism: a punch press, a pressure gauge, and a weighing 
machine. The punch press problem is the same as described above, a handle 
is pulled which forces a punch through some material at the output.  Punch 
presses are evaluated based on their cost, the amount of input handle 
displacement, and how closely they conform to the specified output 
displacement and force. The pressure gauge problem has an input pressure 
source and the output is a dial display that reflects the amount of pressure 
coming from the pressure source, and this problem is evaluated on the cost, 
mass, efficiency, and dial accuracy of the gauge. The weighing machine 
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takes a force input on a footpad and has a dial output, and it is evaluated on 
the cost, mass, dial accuracy, and input displacement of the device. 

These specific problems were utilized to provide both a problem that was 
similar to the weighing machine as well as a problem that was significantly 
different from the weighing machine. The pressure gauge is a measurement 
device with a dial output just like the weighing machine. However, the goal 
of the punch press is to amplify the small input force so that it is sufficient to 
drive a punch through some material. It was thought that this problem shares 
little with the weighing machine so it was used to evaluate how context 
dependent A-Design’s new knowledge capabilities would be.  For example, 
if A-Design learned design chunks from the weighing machine problem, 
then these chunks might be easier to apply in the pressure gauge problem 
since this problem is similar to the weighing machine.  On the other hand, 
applying these same design chunks to the punch press might be more 
difficult and potentially less useful because the punch press does not have 
much in common with the weighing machine. 

5. Results 

5.1. WITHIN PROBLEM RESULTS 

Within problem results for the three design problems can be seen in Figures 
7-9 and Tables 1-3. There appears to be within problem learning in each of 
the three problems (lower evaluation scores are better). A series of paired t-
tests was run to assess the statistical significance of any differences in the 
three performance measures discussed above. 

5.1.1. Weighing Machine 

In the weighing machine problem only the comparison of the initial 
designs was not significantly different (t(19) = 1.19, p = .12), but both the 
comparison of the last designs (t(19) = 2.47, p = .01), and the amount of 
savings were significant (t(19) = 3.73, p < .001). On average, the final 
design produced without any chunks had an evaluation of 21.7 as compared 
to 19.3 with chunks, and the number of iterations required to reach an 
evaluation of 773 was 46 without chunks and 31 with chunks. 

TABLE 1. Within problem performance measures for the weighing machine. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 773 1001 21.7 4.90 45.6 16.0 
Within problem chunks 465 632 19.3 3.29 30.7 20.3 
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Figure 7. Within problem results for the weighing machine problem 

5.1.2. Pressure Gauge 

In the pressure gauge problem the comparison of initial designs (t(19) = 
2.14, p = .02) and savings (t(19) = 1.82, p = .04) were significant, but the 
comparison of final design evaluations was not (t(19) = 1.19, p = .12). On 
average, the initial design produced without any chunks was 50,302 as 
compared to 35,358 with chunks, and the number of iterations required to 
reach an evaluation of 50,302 was 44 without chunks and 32.7 with chunks. 

TABLE 2. Within problem performance measures for the pressure gauge. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 50302 25775 3258 807 44.0 18.0 
Within problem chunks 35358 26275 3005 180 32.7 23.5 

 
 
 
 
 
 
 

Weighing Machine - Within problem

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Weighing machine chunks



12 J. Moss, K. Kotovsky, and J. Cagan 

Copyright © 2002 by Moss, Kotovsky, and Cagan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Figure 8. Within problem results for the pressure gauge problem. 

5.1.3. Punch Press 

In the punch press problem the comparison of initial designs (t(19) = 
3.32, p = .002), final designs (t(19) = 3.34, p = .002), and savings (t(19) = 
2.73, p = .007) were significant. On average, the initial design produced 
without any chunks was 9,046 as compared to 6,675 with chunks, the final 
design produced without any chunks was 1,658 compared to 1,016 with 
chunks, and the number of iterations required to reach an evaluation of 1,658 
was 38.9 without chunks and 23 with chunks. 

TABLE 3. Within problem performance measures for the punch press. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 9046 1327 1658 524 38.9 21.4 
Within problem chunks 6675 2762 1016 517 23.0 18.7 
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Figure 9. Within problem results for the punch press problem. 

5.2. BETWEEN PROBLEM RESULTS 

The results for between problem transfer can be seen in Figures 10-12 and 
Tables 4-6. For each problem, a one way ANOVA was run for each 
comparison followed by a series of planned contrasts if the ANOVA 
indicated any significant differences. 

5.2.1. Weighing Machine 

Figure 10 indicates that the three conditions perform about the same, and 
there were no significant differences in initial evaluations (F(2,57) = .74, p = 
.24), final evaluations (F(2,57) = .06, p = .47), or savings (F(2,57) = .804, p 
= .23) for the weighing machine problem. 

TABLE 4. Between problem performance measures for the weighing machine. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 773 1001 21.7 4.90 45.6 16.0 
Pressure gauge chunks 700 1397 21.2 4.21 49.5 12.6 
Punch press chunks 405 352 21.4 4.73 43.2 18.4 
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Figure 10. Between problem results for the weighing machine problem 

5.2.2. Pressure Gauge 

Figure 11 indicates that the two conditions with chunks perform better than 
solving the problem with no previous knowledge. There were significant 
differences in final evaluations (F(2,57) = 2.94, p = .03) and savings (F(2,57) 
= 4.53, p = .008) but not for the initial evaluations (F(2,57) = .9, p = .21). A 
series of contrasts reveal that chunks from the weighing machine problem 
allow the system to produce better designs than the no chunk condition, and 
both of the chunk conditions produce significant savings when compared to 
the no chunk condition. Final design evaluations in the weighing machine 
chunk condition had an average of 2,766 while the average in the no chunk 
condition was 3,258. Chunks from the weighing machine problem help the 
system to reach an evaluation of 3,258 in 28.8 iterations as compared to 44 
iterations for the no chunk condition, and chunks from the punch press 
problem also allow the system to reach the criterion evaluation in 29 
iterations. Neither of the two between problem transfer cases performed 
better than the within problem transfer in this problem. 
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TABLE 5. Between problem performance measures for the pressure gauge. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 50302 25775 3258 807 44.0 18.0 
Weigh. machine chunks 42190 23483 2766 441 28.8 18.7 
Punch press chunks 52670 28337 2889 705 28.9 18.4 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Between problem results for the pressure gauge problem. 

5.2.3 Punch Press 

Figure 12 indicates that the two conditions with chunks perform better than 
solving the problem with no previous knowledge. There were significant 
differences in final evaluations (F(2,57) = 4.09, p = .01) but not for the 
initial evaluations (F(2,57) = .65, p = .26) or savings (F(2,57) = 1.37, p = 
.13). A series of contrasts reveal that both of the chunk conditions produce 
significantly better final designs when compared to the no chunk condition. 
Final design evaluations in the weighing machine chunk condition had an 
average of 1,298 and in the pressure gauge chunk condition the average was 
1,271, while the average in the no chunk condition was 1,658. Again neither 
of the between problem transfer cases performed better than the within 
problem transfer. 
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TABLE 6. Between problem performance measures for the punch press. 

 Initial 
evaluations 

Final 
evaluations 

Iterations to 
criterion 

 µ σ µ σ µ σ 
No chunks 9046 1327 1658 524 38.9 21.4 
Weigh. machine chunks 8583 1493 1298 413 28.7 20.0 
Pressure gauge chunks 8472 2139 1271 491 30.7 20.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Between problem results for the punch press problem. 

6. Discussion 

The chunking mechanism did result in successful knowledge transfer in 
some cases. In particular there was no between problem transfer when 
working on the weighing machine problem, but the other two problems did 
show transfer on at least one of the three measures. In general, within 
problem transfer was the most effective type of transfer as none of the 
between problem cases outperformed the within problem case in any of the 
problems. In cases where between problem transfer did occur, the 
performance measures that improved were the final design evaluations and 
the savings measure. So while the knowledge from another problem did not 
produce better initial designs in any of the three problems, it was able to 
improve performance throughout the iterative design process. On the other 
hand, knowledge transfer within the same problem produced improvements 
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in all three performance measures including the initial design evaluations in 
some cases. This could indicate that the chunks learned by the system could 
only be applied to a new problem at some later stage of the design process. 
Another explanation is that only some of the chunks learned in another 
problem are beneficial to the current problem, and it takes many attempts to 
find which of the chunks are beneficial when applied to the current design 
problem. 

It was hypothesized that most of the between problem transfer would 
occur between the weighing machine and pressure gauge problems due to 
their similarity. In the pressure gauge problem, the within problem chunks 
lead to the most improvement followed by the chunks from the weighing 
machine problem and finally the punch press chunks. This graded transfer 
makes sense it is easiest for the system to apply knowledge from the same 
problem and somewhat more difficult to apply knowledge from a similar 
problem. However, in the weighing machine problem there was no between 
problem transfer. This behavior appears to be caused by the embodiments 
that occur in the chunks learned from the pressure gauge problem. Every 
pressure gauge takes some pressure source as its input, and, given the 
catalog that was supplied, the only way A-Design has of transforming this 
pressure into a translational motion is by using a hydraulic cylinder. So all 
pressure gauges have cylinders in them, and since chunks are found by 
extracting commonalities, a large portion of the chunks learned have the 
cylinder embodiment in them. None of the best weighing machine designs 
produced had cylinders in them because of the high cost of this embodiment, 
and so these pressure gauge chunks do not appear to be very useful in the 
weighing machine problem. This seems like the most likely cause of the 
asymmetric transfer. 

Overall, there was some success in producing knowledge transfer with a 
simple chunking mechanism. The mechanism takes advantage of A-Design’s 
preexisting trend finding function to extract chunks, and all that was required 
to use these chunks was a new type of C-agent that looks in a memory store 
of chunks instead of the embodiment library. This method of knowledge 
transfer still relies on the power of computational search in A-Design’s 
iterative design process. So while this mechanism was able to produce 
transfer, it produced modest results when transferring chunks between 
problems. The system operates on embodiment level similarities between 
problems, and it lacks any more powerful method of transfer. A more 
powerful transfer mechanism would probably rely on more knowledge based 
methods in addition to or instead of brute force computational search. For 
example, cognitive processes such as abstraction, functional reasoning, and 
analogy can produce knowledge transfer that operates across vastly different 
problems and domains. Research into these and other cognitive processes 
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has produced a basic understanding of knowledge transfer, and studying 
these processes in the domain of design should enable the construction of 
more knowledgeable design automation and assistance tools. 

Future work on this topic will focus on the organization of knowledge in 
memory as this is one difference between experts and novices in many 
domains including chess (Chase and Simon 1973), physics (Larkin et al. 
1980), game playing (Reitman 1976) and electrical diagrams (Egan and 
Schwartz 1979). Organization of information in memory is likely to be a 
difference between experts and novices in the domain of design as well. 
Perhaps providing the agents in A-Design with a better way of organizing 
and retrieving chunks would enable better transfer.  This is one area in which 
the cognitive basis for expertise has been fairly well studied in a number of 
domains, and it would be beneficial to extend this understanding into the 
design domain. 

The use of agents in computational design systems may also have 
implications for cognitive models of the design process. For example, each 
agent could be a model of an individual designer, and this type of multi-
agent model could be used to study design team interactions and other group 
design phenomena. Alternatively, a multi-agent system could be constructed 
that was intended to model the cognitive processing of an individual. This 
may provide an alternative type of model in which to study the cognitive 
processes underlying design as opposed to traditional cognitive models 
(Anderson and Lebiere 1998). A-Design has been the basis for this initial 
exploration into methods of acquiring and transferring knowledge to new 
design problems, and it is apparent that further research in this area should 
yield benefits for computational design systems and further our 
understanding of the cognitive processes underlying the design process. 
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