
Copyright © 2002 by Moss, Kotovsky, and Cagan

Learning from Design Experience in an Agent-Based Design System

Jarrod Moss, Jonathan Cagan1, Kenneth Kotovsky
Carnegie Mellon University, USA

Abstract. A simple learning mechanism was added to an agent-based
computational design system to see if it could then transfer knowledge
across problems. An existing system, A-Design, was enhanced by
giving it the ability to store useful design knowledge in a memory
store so that this knowledge could be used in new design problems.
Three electromechanical design problems were used to evaluate this
new learning mechanism, and results indicate that this simple learning
mechanism is successful at transferring design knowledge to new
problems with some limitations.

1. Introduction

Human designers typically become better at designing devices in a domain
as their experience in that domain increases. This learning process is gradual
and has been documented in a number of other domains (Chase and Simon
1973, Larkin et al. 1980, Reitman 1976, Richman et al. 1995). The reason
for this improvement in performance with experience is due in part to the
ability of the designer to transfer knowledge learned in one problem to the
problem that is currently being pursued. The ability to transfer knowledge
between problems is an important process which has been implemented in
only a few computational design systems.

Case-based design systems such as CADET (Sycara et al. 1991),
ARCHIE-II (Domeshek and Kolodner 1991) , and Kritik2 (Goel et al. 1997)
all have the capability of transferring the knowledge they have stored as
cases to new problems. However, only some of the systems have the
capability of indexing new cases into memory so that the design experience
can accumulate over time (Goel et al. 1997). While these systems are able to
implement a form of knowledge transfer, there are other forms in which the
knowledge being transferred is not an exact part of a previously encountered
design. There are some cases where transfer of more abstract knowledge

1 Author of contact, Dept. of Mechanical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, E-mail: cagan@cmu.edu

2 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

may be beneficial. In these cases, another transfer process may be required
such as analogy.

Analogy is a powerful method that may be used to transfer knowledge
both within and across domains. Analogies could be used to increase
understanding of a novel design by allowing the designer to map previous
experience onto the new device. There are many other uses for analogy in
design, and there has been some work on models of design by analogy
(Bhatta and Goel 1996, Howe et al. 1986, Huhns and Acosta 1988). Other
methods of transfer besides case-based reasoning and analogy have also
been explored.

However, there have been fewer attempts to incorporate knowledge
transfer into more search oriented design systems. These systems usually
employ a form of search that takes advantage of computational power to
search a large number of possible designs, and they have been based on
traditional AI search techniques (Ulrich 1988, Welch and Dixon 1994),
genetic algorithms (Brown and Hwang 1993), simulated annealing
(Szykman and Cagan 1995), and a number of other techniques. This paper
describes an attempt to modify such a design system in order to incorporate
some knowledge transfer processes.

A-Design is a multi-agent design system based on an iterative stochastic
algorithm which in many ways resembles a genetic algorithm (Campbell et
al. 1999, Campbell et al. 2000, Campbell et al. 2001). The fact that the
system is agent-based provides a natural location for the new learning
processes since they can be embodied in the agents. The work presented here
is an attempt to augment A-Design with a simple learning mechanism that
allows it to transfer knowledge across design problems. The idea is to give
the system the capability to extract knowledge as it solves design problems
which can then be used to improve performance when solving novel
problems. This process allows A-Design to work with design knowledge at
an abstract level which is not tied to a specific design, but using this
knowledge does not require a complex analogical process. An introduction
to A-Design is presented first followed by a description of the changes to the
system that allow it to learn from its design experience.

2. Background: A-Design

An introduction to A-Design is required in order to explain how the agents
in the system produce designs, and how the system was modified in order to
include the new learning processes. A detailed description of A-Design can
be found in Campbell (Campbell 2000). A-Design is an agent-based design
system that produces an array of conceptual design solutions in response to a
set of input and output constraints for a design problem.

3 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

A design problem is specified to A-Design by specifying the input and
output constraints of the desired device in A-Design’s representation. For
example, a punch press could be specified to the system by indicating that
the input is a downward force on a handle, and the output of the device is a
much larger downward force that drives a punch into some material (Figure
1). Along with these general input and output specifications, a number of
other input/output constraints are specified such as the desire to minimize
handle displacement in the punch press (shown as a goal of zero meters of
displacement in Figure 1). This problem also specifies that the punch should
only be displaced by .25m. In addition to these constraints a number of other
objectives can be specified such as minimizing the cost and weight of the
device. Once a problem and all of the associated objectives have been
specified, A-Design’s iterative design process attempts to produce a design
that optimizes these design goals.

Figure 1. The specification for the punch press problem.

2.1. ITERATIVE DESIGN PROCESS

A-Design’s iterative design process is similar to a genetic algorithm because
in each iteration a number of new design candidates are produced by the
system, and then the best of these designs are chosen to be the basis for the
production of new designs in the next iteration. The basic structure of A-
Design’s iterative design process is shown in Figure 2 along with the set of
agents associated with each part of the process.

The design process begins with a set of configurations agents (C-agents)
who construct candidate designs using a library of embodiments. Each C-
agent adds one embodiment to an incomplete design until either the design is
complete or a maximum number of embodiments have been added to the
design. A candidate design starts off as just a set of input and output
constraints to which components can be added. These input and output
constraints are represented in structures called functional parameters (FP’s).
An FP represents the characteristics of an interface between components,
and a C-agent utilizes the qualitative information in an FP to determine
which embodiments in the catalog can be connected to the incomplete
design. Once an embodiment is added to one of the FP’s, the free ports of
the embodiment are included as new FP’s where future embodiments can be
attached. A form of qualitative reasoning is used to update the constraints in

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

Punch Press problem
Input-device: Handle Output-device: Punch
Input-force: 6 N Output-force goal: 100 N
Input-displacement goal: 0 m Output-displacement goal: .25 m
Objectives: minimize cost, minimize weight

4 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

the incomplete design as each embodiment is added. A candidate is complete
once it has connected the input and output FP’s and has qualitatively
satisfied the input and output constraints. A C-agent chooses which
embodiment to add to an incomplete design based on a set of preferences
built into the agent, the current state of the incomplete design, and other
influences originating from the manager agents in the system. For example,
some C-agents may prefer hydraulic components while others prefer
electrical ones or components connected in series over ones connected in
parallel. The current state of the design can also influence which
embodiment a C-agent selects. If a device should have a bounded
displacement at the output such as in the punch press example in Figure 1,
then an agent would prefer components which accomplished this goal when
added to the system. The C-agents’ choices are also influenced by feedback
they receive from manager agents in the system as discussed below. Once
the set of C-agents have constructed a set number of designs these designs
are passed to a group of instantiation agents (I-agents).

Figure 2. A-Design’s iterative design process.

I-agents take the configuration designs from C-agents and instantiate the
parameters in the system with values obtained from a catalog of components.
Each embodiment in the configuration has a set of parameters such as
length, weight, or resistance. These agents also have a set of built in
preferences. For example, some I-agents may prefer using components that
are low cost while others prefer those that are low weight. Once all of the
components in a design have been instantiated, equations that describe the
behavior of the design can be extracted. These equations allow the design to
be evaluated on how well it satisfies the constraints of the given problem.
For example, the equations extracted from a punch press design are then
used to evaluate how much the handle is displaced since that is one of the
specified constraints. Each device is evaluated along the dimensions

C-agents

I-agents M-agents

F-agentsInput/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo
d

D
es
ig
ns

Fragments

Good
Designs

Poor
Designs

C-agents

I-agents M-agents

F-agentsInput/Output
Specification

C
onfigurations

Instantiated
Designs

G
oo
d

D
es
ig
ns

Fragments

Good
Designs

Poor
Designs

5 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

specified in the problem, and these evaluations are combined into a linearly
weighted sum. All of the devices are then sorted by this sum and good and
poor devices are separated based on this ordering. These design partitions
are then passed to a set of manager agents (M-agents).

M-agents take the current design population and produce feedback that
controls how other agents in the system operate. First, the agents which
contribute to good and poor designs are examined and the probabilities
controlling how often those agents contribute to designs are adjusted. A C-
agent that contributed to a number of good designs will be called more
frequently than one who contributed to many poor designs. The M-agents
keep track of the number of good designs that each C/I-agent contributes to,
and the probability that a specific C/I-agent will be called upon in the future
is a function of its past success. These statistics are used for all of the agents
except for the M-agents. Managers also look for trends in the design
population. Trends are groups of agents or connected embodiments that
appear together in a number of designs (see example in Figure 3). Good
trends are found by examining the top six designs, and bad trends are found
in the worst six designs. Good trends are placed on a todo list and bad trends
on a taboo list. These lists work by encouraging agents to reproduce
combinations of agents or embodiments that are on the todo list and
discouraging agents from reproducing the groups on the taboo list. In this
manner, the todo/taboo lists allow the M-agent to influence the designs that
are generated in the next iteration of the design process, but they exert this
influence only within a given run on a single problem.

Figure 3. A trend is found by multiple designs with the result circled

In addition to passing the good designs from the current iteration into the
next iteration, all good designs are passed to fragmentation agents (F-

6 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

agents), who take out one or more components of the design. These
fragmented designs are then reconstructed and become part of the next
iteration’s design population. This fragmentation process allows good
designs to propagate similar designs to the next iteration with the hope that
the changes made to the design will improve it. The design population now
consists of the good designs plus the newly reconstructed designs. In the
next iteration the C-agents produce the number of new designs necessary to
bring the design population back to the original number of designs, and this
design population level is a parameter of the system. This iterative process is
the basis of the A-Design system.

3. Learning Across Problems in A-Design

We extended A-Design so that it could learn from its design experiences. In
order to do this A-Design needs to be able to extract knowledge from its
problem solving activities, and once it has this knowledge there has to be
some way of applying it to new design problems. One type of information
that A-Design already knows how to extract is the good trends in a set of
designs. The sets of interconnected embodiments that appear on the todo list
are subsystems that appear in a number of good designs, and so it is likely
then that these subsystems perform well in the current problem and may be
worth remembering for future use.

A-Design’s design process is series of iterations in which the current
designs perform the same as or better than those in the previous iteration,
and so it seemed to make sense that the subsystems found on the todo list in
the final iteration were the ones to be remembered in some kind of memory
store. Each subsystem appearing on this list is extracted and placed into
memory as a chunk of knowledge. Each chunk in memory is indexed by its
input and output constraints since this is the only information that is needed
to determine if a component can be added to an incomplete design by the C-
agents in the system. An example chunk consisting of a belt and pulley
connected together is shown in Figure 4. This chunk extraction process is
only half of the knowledge transfer process, and so a new set of C-agents
were added to the system and given the ability to add chunks from memory
to designs during the configuration part of the design process.

These memory agents (Mem-agents) add components to incomplete
designs just as the C-agents do except that they are adding chunks from
memory instead of embodiments from the embodiment catalog. There is a
three step process by which a chunk is added to a design (Figure 5). First, a
memory agent is called to work on an incomplete design. The memory agent
then examines the open FP’s in the system to determine where chunks may
be added. The agent then looks in memory for a chunk that is compatible
with one of more of the FP’s in the design and adds this chunk. As

7 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

mentioned before, all chunks are indexed in memory by their input and
output constraints which are essentially input and output FP’s for the chunk.
Chunks can then be retrieved from memory either based on their input, their
output, or both. Each of these retrieval methods is embodied in one Mem-
agent. For example, the Mem-agent implementing the input retrieval strategy
will search for a chunk in memory whose input constraints match one of the
open FP’s in the design.

Figure 4. An example design chunk

There are some cases in which multiple chunks in memory are retrieved
as possible chunks to be added to a design. In this case, the agent needs a
way of determining which chunk to add. The chunk could just be randomly
selected from all possible chunks, or there could be some form of learning
that takes place within the memory agent that allows it to pick the chunk
most likely to produce a good design. The second option was implemented
and is based on learning mechanisms found in the ACT-R model of human
memory (Anderson and Lebiere 1998). Each memory agent is informed
about the consequences of its actions by the manager agent, and the memory
agent can then use this feedback to choose among multiple chunks when it
has to. When a Mem-agent adds a chunk to a design, the design can either
end up being a good design or a poor design. The proportion of good designs
that result from using a particular chunk is calculated. When multiple chunks
are retrieved, the probability that any particular one is chosen is just the
proportion of good designs for that chunk divided by the sum of the
proportions for all of the chunks retrieved from memory. If the proportion of
good designs for a particular chunk is below some minimum level then this
minimum proportion is used instead of the actual value so that every chunk
has at least a small probability of being chosen regardless of its past
performance. This mechanism is also similar to the strategy for move
selection in the simulated annealing algorithm found in (Hustin and
Sangiovanni-Vincentelli 1987). These new additions to A-Design were then

Design Chunk
Belt-pulley-chunk
Isa: design-chunk
Input-domain: translation
Input-interface: bolt
Output-domain: rotation
Output-interface: shaft-hole
Components: (belt pulley)
Connectivity: port-1 of component-1 is connected to port-1 of component-2

Design Chunk
Belt-pulley-chunk
Isa: design-chunk
Input-domain: translation
Input-interface: bolt
Output-domain: rotation
Output-interface: shaft-hole
Components: (belt pulley)
Connectivity: port-1 of component-1 is connected to port-1 of component-2

8 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

tested to see if they allowed the system to successfully transfer knowledge to
new problems.

Figure 5. Memory agents retrieve chunks from memory

4. Testing Learning

The chunk learning mechanism of A-Design was tested to see if it allowed
the system to demonstrate learning both within and between problems.
Learning within the same problem is simply the case where A-Design works
on a design problem, learns chunks, and then works on the same design
problem again with the new chunks. Within problem learning should
indicate whether the chunking mechanism is allowing the system to learn
and apply useful knowledge about the design problem. Between problem
learning occurs when A-Design applies chunks learned in one problem to a
new design problem, and it is this type of learning that the chunking
mechanism was designed to accomplish.

Within problem learning was evaluated by running A-Design 20 times on
one problem, and in each of these runs, a set of chunks was generated from
the final design population. A-Design was then run again on the same
problem 20 times, once with each set of learned chunks. The number of
iterations in each run was 60, and the design population was set to 120
designs. A graph of A-Design’s performance on a design problem can be
constructed by taking the evaluation score for the best design at each
iteration and averaging this evaluation across all twenty runs of the problem.

lever

rack
gear

spring

ground

Memory
Input

Output

Input Output

belt
pulley

spring

ground

Input
Output

Memory agent retrieves chunk

Output
FPInput

FP

FP
shaft dial

footpad

torsion spring ground

FP

Incomplete Design

Energy: Translation Energy: Rotation
Interface: Bolt Interface: Shaft

lever

rack
gear

spring

ground

Memory
Input

Output

Input Output

belt
pulley

spring

ground

Input
Output

lever

rack
gear

spring

ground

Memory
Input

Output

Input Output

belt
pulleypulley

spring

ground

Input
Output

Memory agent retrieves chunk

Output
FPInput

FP

FP
shaft dial

footpad

torsion springtorsion spring ground

FP

Incomplete Design

Energy: Translation Energy: Rotation
Interface: Bolt Interface: Shaft

9 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

This leads to a graph similar to Figure 6 in which each line in the figure
shows A-Design’s performance on one design problem. The performance
difference between the initial problem and the second attempt at the problem
was measured in three ways (see Figure 6): the evaluations of the initial and
final designs for each condition can be compared and the number of
iterations until a specified evaluation level is reached can be compared. The
comparison of the number of iterations can be looked at as the number of
iterations that were saved by the presence of chunks and it will be referred to
as a measure of savings. The criterion evaluation level for each problem
presented here is just the average evaluation score obtained in the final best
design without using a set of stored chunks, i.e. just the performance of the
A-Design system without the new learning mechanism. Any differences in
performance from the first attempt to the second can then be attributed to the
chunks that were used in the second attempt.

Figure 6. An illustration of the three measures of performance

4.1. DESIGN PROBLEMS

Three electromechanical design problems were used to assess the benefits of
the chunking mechanism: a punch press, a pressure gauge, and a weighing
machine. The punch press problem is the same as described above, a handle
is pulled which forces a punch through some material at the output. Punch
presses are evaluated based on their cost, the amount of input handle
displacement, and how closely they conform to the specified output
displacement and force. The pressure gauge problem has an input pressure
source and the output is a dial display that reflects the amount of pressure
coming from the pressure source, and this problem is evaluated on the cost,
mass, efficiency, and dial accuracy of the gauge. The weighing machine

A
vg

. D
es

ig
n

Ev
al

ua
tio

n

No. of Iterations

Comparison of initial
designs

Comparison of final designs

Dashed line indicates level of
performance defined to be acceptable

Difference in number of iterations to
achieve acceptable performance

A
vg

. D
es

ig
n

Ev
al

ua
tio

n

No. of Iterations

Comparison of initial
designs

Comparison of final designs

Dashed line indicates level of
performance defined to be acceptable

Difference in number of iterations to
achieve acceptable performance

10 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

takes a force input on a footpad and has a dial output, and it is evaluated on
the cost, mass, dial accuracy, and input displacement of the device.

These specific problems were utilized to provide both a problem that was
similar to the weighing machine as well as a problem that was significantly
different from the weighing machine. The pressure gauge is a measurement
device with a dial output just like the weighing machine. However, the goal
of the punch press is to amplify the small input force so that it is sufficient to
drive a punch through some material. It was thought that this problem shares
little with the weighing machine so it was used to evaluate how context
dependent A-Design’s new knowledge capabilities would be. For example,
if A-Design learned design chunks from the weighing machine problem,
then these chunks might be easier to apply in the pressure gauge problem
since this problem is similar to the weighing machine. On the other hand,
applying these same design chunks to the punch press might be more
difficult and potentially less useful because the punch press does not have
much in common with the weighing machine.

5. Results

5.1. WITHIN PROBLEM RESULTS

Within problem results for the three design problems can be seen in Figures
7-9 and Tables 1-3. There appears to be within problem learning in each of
the three problems (lower evaluation scores are better). A series of paired t-
tests was run to assess the statistical significance of any differences in the
three performance measures discussed above.

5.1.1. Weighing Machine

In the weighing machine problem only the comparison of the initial
designs was not significantly different (t(19) = 1.19, p = .12), but both the
comparison of the last designs (t(19) = 2.47, p = .01), and the amount of
savings were significant (t(19) = 3.73, p < .001). On average, the final
design produced without any chunks had an evaluation of 21.7 as compared
to 19.3 with chunks, and the number of iterations required to reach an
evaluation of 773 was 46 without chunks and 31 with chunks.

TABLE 1. Within problem performance measures for the weighing machine.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 773 1001 21.7 4.90 45.6 16.0
Within problem chunks 465 632 19.3 3.29 30.7 20.3

11 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

Figure 7. Within problem results for the weighing machine problem

5.1.2. Pressure Gauge

In the pressure gauge problem the comparison of initial designs (t(19) =
2.14, p = .02) and savings (t(19) = 1.82, p = .04) were significant, but the
comparison of final design evaluations was not (t(19) = 1.19, p = .12). On
average, the initial design produced without any chunks was 50,302 as
compared to 35,358 with chunks, and the number of iterations required to
reach an evaluation of 50,302 was 44 without chunks and 32.7 with chunks.

TABLE 2. Within problem performance measures for the pressure gauge.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 50302 25775 3258 807 44.0 18.0
Within problem chunks 35358 26275 3005 180 32.7 23.5

Weighing Machine - Within problem

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Weighing machine chunks

12 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

.

Figure 8. Within problem results for the pressure gauge problem.

5.1.3. Punch Press

In the punch press problem the comparison of initial designs (t(19) =
3.32, p = .002), final designs (t(19) = 3.34, p = .002), and savings (t(19) =
2.73, p = .007) were significant. On average, the initial design produced
without any chunks was 9,046 as compared to 6,675 with chunks, the final
design produced without any chunks was 1,658 compared to 1,016 with
chunks, and the number of iterations required to reach an evaluation of 1,658
was 38.9 without chunks and 23 with chunks.

TABLE 3. Within problem performance measures for the punch press.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 9046 1327 1658 524 38.9 21.4
Within problem chunks 6675 2762 1016 517 23.0 18.7

Pressure Gauge - Within Problem

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Pressure gauge chunks

13 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

Figure 9. Within problem results for the punch press problem.

5.2. BETWEEN PROBLEM RESULTS

The results for between problem transfer can be seen in Figures 10-12 and
Tables 4-6. For each problem, a one way ANOVA was run for each
comparison followed by a series of planned contrasts if the ANOVA
indicated any significant differences.

5.2.1. Weighing Machine

Figure 10 indicates that the three conditions perform about the same, and
there were no significant differences in initial evaluations (F(2,57) = .74, p =
.24), final evaluations (F(2,57) = .06, p = .47), or savings (F(2,57) = .804, p
= .23) for the weighing machine problem.

TABLE 4. Between problem performance measures for the weighing machine.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 773 1001 21.7 4.90 45.6 16.0
Pressure gauge chunks 700 1397 21.2 4.21 49.5 12.6
Punch press chunks 405 352 21.4 4.73 43.2 18.4

Punch Press - Within Problem

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Punch press chunks

14 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

Figure 10. Between problem results for the weighing machine problem

5.2.2. Pressure Gauge

Figure 11 indicates that the two conditions with chunks perform better than
solving the problem with no previous knowledge. There were significant
differences in final evaluations (F(2,57) = 2.94, p = .03) and savings (F(2,57)
= 4.53, p = .008) but not for the initial evaluations (F(2,57) = .9, p = .21). A
series of contrasts reveal that chunks from the weighing machine problem
allow the system to produce better designs than the no chunk condition, and
both of the chunk conditions produce significant savings when compared to
the no chunk condition. Final design evaluations in the weighing machine
chunk condition had an average of 2,766 while the average in the no chunk
condition was 3,258. Chunks from the weighing machine problem help the
system to reach an evaluation of 3,258 in 28.8 iterations as compared to 44
iterations for the no chunk condition, and chunks from the punch press
problem also allow the system to reach the criterion evaluation in 29
iterations. Neither of the two between problem transfer cases performed
better than the within problem transfer in this problem.

Weighing Machine - Between Problems

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Pressure gauge chunks Punch press chunks

15 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

TABLE 5. Between problem performance measures for the pressure gauge.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 50302 25775 3258 807 44.0 18.0
Weigh. machine chunks 42190 23483 2766 441 28.8 18.7
Punch press chunks 52670 28337 2889 705 28.9 18.4

Figure 11. Between problem results for the pressure gauge problem.

5.2.3 Punch Press

Figure 12 indicates that the two conditions with chunks perform better than
solving the problem with no previous knowledge. There were significant
differences in final evaluations (F(2,57) = 4.09, p = .01) but not for the
initial evaluations (F(2,57) = .65, p = .26) or savings (F(2,57) = 1.37, p =
.13). A series of contrasts reveal that both of the chunk conditions produce
significantly better final designs when compared to the no chunk condition.
Final design evaluations in the weighing machine chunk condition had an
average of 1,298 and in the pressure gauge chunk condition the average was
1,271, while the average in the no chunk condition was 1,658. Again neither
of the between problem transfer cases performed better than the within
problem transfer.

Pressure Gauge - Between Problems

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Weighing machine chunks Punch press chunks

16 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

TABLE 6. Between problem performance measures for the punch press.

 Initial
evaluations

Final
evaluations

Iterations to
criterion

 µ σ µ σ µ σ
No chunks 9046 1327 1658 524 38.9 21.4
Weigh. machine chunks 8583 1493 1298 413 28.7 20.0
Pressure gauge chunks 8472 2139 1271 491 30.7 20.9

Figure 12. Between problem results for the punch press problem.

6. Discussion

The chunking mechanism did result in successful knowledge transfer in
some cases. In particular there was no between problem transfer when
working on the weighing machine problem, but the other two problems did
show transfer on at least one of the three measures. In general, within
problem transfer was the most effective type of transfer as none of the
between problem cases outperformed the within problem case in any of the
problems. In cases where between problem transfer did occur, the
performance measures that improved were the final design evaluations and
the savings measure. So while the knowledge from another problem did not
produce better initial designs in any of the three problems, it was able to
improve performance throughout the iterative design process. On the other
hand, knowledge transfer within the same problem produced improvements

Punch Press - Between Problems

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Iteration

Ev
al

ua
tio

n

No chunks Weighing machine chunks Pressure gauge chunks

17 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

in all three performance measures including the initial design evaluations in
some cases. This could indicate that the chunks learned by the system could
only be applied to a new problem at some later stage of the design process.
Another explanation is that only some of the chunks learned in another
problem are beneficial to the current problem, and it takes many attempts to
find which of the chunks are beneficial when applied to the current design
problem.

It was hypothesized that most of the between problem transfer would
occur between the weighing machine and pressure gauge problems due to
their similarity. In the pressure gauge problem, the within problem chunks
lead to the most improvement followed by the chunks from the weighing
machine problem and finally the punch press chunks. This graded transfer
makes sense it is easiest for the system to apply knowledge from the same
problem and somewhat more difficult to apply knowledge from a similar
problem. However, in the weighing machine problem there was no between
problem transfer. This behavior appears to be caused by the embodiments
that occur in the chunks learned from the pressure gauge problem. Every
pressure gauge takes some pressure source as its input, and, given the
catalog that was supplied, the only way A-Design has of transforming this
pressure into a translational motion is by using a hydraulic cylinder. So all
pressure gauges have cylinders in them, and since chunks are found by
extracting commonalities, a large portion of the chunks learned have the
cylinder embodiment in them. None of the best weighing machine designs
produced had cylinders in them because of the high cost of this embodiment,
and so these pressure gauge chunks do not appear to be very useful in the
weighing machine problem. This seems like the most likely cause of the
asymmetric transfer.

Overall, there was some success in producing knowledge transfer with a
simple chunking mechanism. The mechanism takes advantage of A-Design’s
preexisting trend finding function to extract chunks, and all that was required
to use these chunks was a new type of C-agent that looks in a memory store
of chunks instead of the embodiment library. This method of knowledge
transfer still relies on the power of computational search in A-Design’s
iterative design process. So while this mechanism was able to produce
transfer, it produced modest results when transferring chunks between
problems. The system operates on embodiment level similarities between
problems, and it lacks any more powerful method of transfer. A more
powerful transfer mechanism would probably rely on more knowledge based
methods in addition to or instead of brute force computational search. For
example, cognitive processes such as abstraction, functional reasoning, and
analogy can produce knowledge transfer that operates across vastly different
problems and domains. Research into these and other cognitive processes

18 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

has produced a basic understanding of knowledge transfer, and studying
these processes in the domain of design should enable the construction of
more knowledgeable design automation and assistance tools.

Future work on this topic will focus on the organization of knowledge in
memory as this is one difference between experts and novices in many
domains including chess (Chase and Simon 1973), physics (Larkin et al.
1980), game playing (Reitman 1976) and electrical diagrams (Egan and
Schwartz 1979). Organization of information in memory is likely to be a
difference between experts and novices in the domain of design as well.
Perhaps providing the agents in A-Design with a better way of organizing
and retrieving chunks would enable better transfer. This is one area in which
the cognitive basis for expertise has been fairly well studied in a number of
domains, and it would be beneficial to extend this understanding into the
design domain.

The use of agents in computational design systems may also have
implications for cognitive models of the design process. For example, each
agent could be a model of an individual designer, and this type of multi-
agent model could be used to study design team interactions and other group
design phenomena. Alternatively, a multi-agent system could be constructed
that was intended to model the cognitive processing of an individual. This
may provide an alternative type of model in which to study the cognitive
processes underlying design as opposed to traditional cognitive models
(Anderson and Lebiere 1998). A-Design has been the basis for this initial
exploration into methods of acquiring and transferring knowledge to new
design problems, and it is apparent that further research in this area should
yield benefits for computational design systems and further our
understanding of the cognitive processes underlying the design process.

Acknowledgments
This research effort was partially sponsored by a National Defense Science and
Engineering Fellowship and by the Air Force Office of Scientific Research, Air
Force Material Command, USAF, under grant numbers F49620-98-1-0172 and
F49620-01-1-0050. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFOSR or the U.S. Government.

The authors would also like to acknowledge the assistance and support provided
by Matt Campbell while learning the intricacies of the A-Design system and while
generating some initial ideas on how the system could be extended.

19 J. Moss, K. Kotovsky, and J. Cagan

Copyright © 2002 by Moss, Kotovsky, and Cagan

References
Anderson, J R and Lebiere, C: 1998, The atomic components of thought, Lawrence Erlbaum,

Mahwah, NJ.
Bhatta, S R and Goel, A K: 1996, From design experiences to generic mechanisms: Model-

based learning in analogical design, Artificial Intelligence for Engineering Design
Analysis and Manufacturing, 10(2): 131-136.

Brown, D R and Hwang, K Y: 1993, Solving fixed configuration problems with genetic
search, Research in Engineering Design, 5(2): 80-87.

Campbell, M I: 2000, The A-Design invention machine: A means of automating and
investigating conceptual design, Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh, PA.

Campbell, M I, Cagan, J and Kotovsky, K: 1999, A-design: An agent-based approach to
conceptual design in a dynamic environment, Research in Engineering Design, 11(3):
172-192.

Campbell, M I, Cagan, J and Kotovsky, K: 2000, Agent-based synthesis of electromechanical
design configurations, Journal of Mechanical Design, 122(1): 61-69.

Campbell, M I, Cagan, J and Kotovsky, K: 2001, Learning from design experience:
Todo/Taboo guidance, 2001 ASME Design Engineering Technical Conferences and
Computers in Engineering Conference: Design Theory and Methodology Conference,
Pittsburgh, PA, DETC01/DTM-21687.

Chase, W G and Simon, H A: 1973, Perception in Chess, Cognitive Psychology, 4(1): 55-81.
Domeshek, E A and Kolodner, J L: 1991, Toward a Case-Based Aid for Conceptual Design,

International journal of expert systems, 4(2): 201-220.
Egan, D E and Schwartz, B J: 1979, Chunking in Recall of Symbolic Drawings, Memory &

Cognition, 7(2): 149-158.
Goel, A K, Bhatta, S R and Stroulia, E: 1997, Kritik: An early case-based design system in

Maher, M L and Pu, P (Eds), Issues and Applications of Case-Based Reasoning in
Design, Lawrence Erlbaum, Mahwah, NJ, pp. 87-132.

Howe, A E, Cohen, P R, Dixon, J R and Simmons, M K: 1986, Dominic: A domain-
independent program for mechanical engineering design, Artificial Intelligence in
Engineering, 1(1): 289-299.

Huhns, M N and Acosta, R D: 1988, Argo - a System for Design by Analogy, IEEE Expert-
Intelligent Systems & Their Applications, 3(3): 53-68.

Hustin, S and Sangiovanni-Vincentelli, A: 1987, TIM, a new standard and cell placement
program based on the simulated annealing algorithm, IEEE Physical Design Workshop on
Placement and Floorplanning, Hilton Head, SC.

Larkin, J H, McDermott, J, Simon, D P and Simon, H A: 1980, Models of Competence in
Solving Physics Problems, Cognitive Science, 4(4): 317-345.

Reitman, J S: 1976, Skilled Perception in Go - Deducing Memory Structures from Inter-
Response Times, Cognitive Psychology, 8(3): 336-356.

Richman, H B, Staszewski, J J and Simon, H A: 1995, Simulation of expert memory using
EPAM IV, Psychological Review, 102(2): 305-330.

Sycara, K, Chandra, D N, Guttal, R, Koning, J and Narasimhan, S: 1991, CADET: A Case-
Based Synthesis Tool for Engineering Design, International journal of expert systems,
4(2): 157-188.

Szykman, S and Cagan, J: 1995, A Simulated Annealing-Based Approach to 3-Dimensional
Component Packing, Journal of Mechanical Design, 117(2): 308-314.

Ulrich, K T: 1988, Computation and pre-parametric design, Technical Report 1043, AI Lab,
MIT, Cambridge, MA.

Welch, R V and Dixon, J R: 1994, Guiding conceptual design through behavioral reasoning,
Research in Engineering Design, 6(169-188.

